

GCSE

Chemistry B

General Certificate of Secondary Education

Unit **B642/02**: Modules C4, C5, C6 (Higher Tier)

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk

Annotations

Annotation	Meaning
	correct response
	incorrect response
	benefit of the doubt
	benefit of the doubt <u>not</u> given
	error carried forward
	information omitted
	ignore
	reject
	contradiction

Subject-specific Marking Instructions

/ = alternative and acceptable answers for the same marking point
(1) = separates marking points
allow = answers that can be accepted
not = answers which are not worthy of credit
reject = answers which are not worthy of credit
ignore = statements which are irrelevant
 () = words which are not essential to gain credit
 _____ = underlined words must be present in answer to score a mark (although not correctly spelt unless otherwise stated)
ecf = error carried forward
AW = alternative wording
ora = or reverse argument

Question		Answer	Marks	Guidance
1	(a)	hydrochloric (acid) / HCl / sulfuric (acid) / H ₂ SO ₄ (1)	1	allow incorrect use of superscripts, subscripts or case allow ammonium nitrate / NH ₄ NO ₃
	(b)	sodium hydroxide and hydrochloric (acid) / NaOH and HCl(1)	1	allow mix of names and formulae allow incorrect use of superscripts, subscripts or case
	(c)	hydrochloric (acid) / HCl / sulfuric (acid) / H ₂ SO ₄ (1)	1	allow incorrect use of superscripts, subscripts or case
		Total	3	

Question			Answer	Marks	Guidance
2	(a)	(i)	149 (1)	1	
		(ii)	28.19 (%) (1)	1	allow any value between 28.2 and 28 allow ecf from wrong M_r from (a)(i)
	(b)		$\frac{17.5}{25} \times 100 \text{ (1)}$ but 70 (2)	2	allow $\frac{am}{pm} \times 100$ for one mark if answer incorrect allow full marks for 70(%) with no working out
	(c)		Level 0 (0 mark) No attempt has been made or the answer is not describing any aspect of eutrophication. Level 1 (1 mark) Idea that fertiliser, ammonium salts or phosphates increase the growth of water plants or an algal bloom or idea that organisms die because of lack of oxygen Level 2 (2 marks) Idea that algal bloom blocks out the sunlight so the water plants die Level 3 (3 marks) Idea that aerobic bacteria feed on the dead or decaying plants using up the oxygen	3	Use ticks in this question LEVEL OF RESPONSE MARK SCHEME Mark Scheme is hierarchical – level 1 is required before level 2 can be awarded and levels 1 and 2 are required before level 3 can be awarded ignore fertiliser poisons fish or other organisms at level 1 level 2 plants die because they cannot photosynthesise because of competition for sunlight allow microbes / microorganisms / decomposers instead of bacteria
			Total	7	

Question		Answer	Marks	Guidance
3	(a)	as carbon dioxide goes up the pH goes down (1)	1	allow as carbon dioxide increases the sea water gets less alkaline / as carbon dioxide increases the sea water gets more acidic allow ora
	(b)	universal indicator will be the same colour for all the pH values from 1970 (1)	1	allow there is no colour change (over this small pH range) allow does not have enough colours to measure the pH values allow universal can only really be used to measure the whole number pH values
	(c)	$\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3$ (1)	1	allow any correct multiple allow = instead of → not and or & instead of +
		Total	3	

Question		Answer	Marks	Guidance
4	(a)	any one from can use a lower temperature (saving energy costs) / can use a lower pressure (saving energy costs) (1) idea of less wear on equipment (1) idea that labour costs are reduced (1)	1	allow so the energy costs are reduced allow can make more hydrogen peroxide in the same time
	(b)	any two from: automation / have machines can reduce costs because you can reduce labour costs / do not use people to do jobs to save salaries (1) recycle any unreacted starting materials so they are not wasted (1) availability of starting material the cheaper the raw material the lower the cost (1) use a lower pressure saves energy cost (1) use a lower temperature saves energy costs (1)	2	allow answers from part (a) if factor and explanation is given and not already credited in part (a)
		Total	3	

Question		Answer	Marks	Guidance
5	(a)	has weak (intermolecular) forces between the layers (1)	1	allow weak bonds between layers allow Van der Waals' forces between layers has weak intermolecular forces is not sufficient not weak covalent bonds
	(b)	(i) no free electrons / all electrons in bonds (1)	1	no mobile electrons / electrons cannot move / no delocalised electrons not reference to ions
	(ii)	strong covalent bonds (1) lots of energy needed to break the bonds (1)	2	allow has a giant (covalent) structure strong bonds not sufficient not giant ionic or giant metallic / intermolecular forces allow lots of heat needed to break the bonds not lots of energy needed to break ionic or metallic bonds harder to break or more heat to break not sufficient
		Total	4	

Question		Answer	Marks	Guidance												
6	(a)	120 (tonnes) (1)	1	unit not needed												
	(b)	<table border="1" data-bbox="449 333 988 952"> <tr> <td>sentence</td> <td></td> </tr> <tr> <td>At equilibrium the forward and backward reactions have stopped.</td> <td></td> </tr> <tr> <td>At equilibrium the rate of the forward reaction is greater than the backward reaction.</td> <td></td> </tr> <tr> <td>At equilibrium the rate of the forward reaction is the same as the backward reaction.</td> <td>✓</td> </tr> <tr> <td>At equilibrium the concentrations of the reactants are the same as the concentrations of the products.</td> <td></td> </tr> <tr> <td>At equilibrium the concentrations of the reactants and of the products do not change</td> <td>✓</td> </tr> </table> <p>one correct (1) but two correct (2)</p>	sentence		At equilibrium the forward and backward reactions have stopped.		At equilibrium the rate of the forward reaction is greater than the backward reaction.		At equilibrium the rate of the forward reaction is the same as the backward reaction.	✓	At equilibrium the concentrations of the reactants are the same as the concentrations of the products.		At equilibrium the concentrations of the reactants and of the products do not change	✓	2	if more than two ticks mark the incorrect answers first. <ul style="list-style-type: none"> one incorrect answer max 1 mark two or more incorrect will be 0
sentence																
At equilibrium the forward and backward reactions have stopped.																
At equilibrium the rate of the forward reaction is greater than the backward reaction.																
At equilibrium the rate of the forward reaction is the same as the backward reaction.	✓															
At equilibrium the concentrations of the reactants are the same as the concentrations of the products.																
At equilibrium the concentrations of the reactants and of the products do not change	✓															
	(c)	greater concentration of products / smaller concentration of reactants (1)	1	allow more products / more hydrogen / more carbon monoxide / less methane / less water / less reactants ignore rate for forward faster than rate of backward reaction												
		Total	4													

Question		Answer	Marks	Guidance
7	(a)	Na_2SO_4 (1)	1	allow any order of atoms case and subscript must be correct
	(b)	1.2 (g) (1)	1	unit not needed
	(c)	0.535 (1)	1	allow 0.54 not 0.5 unit not needed
	(d)	$\text{Ba}^{2+}(\text{aq}) + \text{SO}_4^{2-}(\text{aq}) \rightarrow \text{BaSO}_4(\text{s})$ (1) correct formulae and balancing (1) correct state symbols (1)	2	case and subscript must be correct for formulae mark allow state symbol mark even if there are errors in case, superscript or subscript
	(e)	iions (1) can move / react at electrodes – dependant on marking point 1 being correct (1)	2	allow has charged particles (1) that can move (1) allow has free ions (2) allow has ions attracted to electrode (2) allow one mark for has particles that can move / electrons that can move
		Total	7	

B642/02

Mark Scheme

January 2012

Question		Answer	Marks	Guidance
8	(a)	mass = 0.44g and M_r of carbon dioxide is 44 (1) moles = 0.01 (1) volume = 0.24 (dm ³)	3	unit not needed allow ecf from mass and M_r unit not needed allow ecf from moles i.e. moles x 24 allow full marks with no working for 0.24 (dm ³)
	(b)	0.02 (1)	1	unit not needed
	(c) (i)	both have the same amount of acid / have the same number of moles (1)	1	allow (can eventually) have the same number of hydrogen ions ignore have the same volume and concentration
	(ii)	ethanoic acid has fewer hydrogen ions (1) there are fewer collisions / less collisions (1)	2	assume answer refer to ethanoic acid unless hydrochloric acid is specified in which case award ora allow higher level answers such as there are less collisions per second / lower collision frequency
		Total	7	

Question		Answer	Marks	Guidance
9	(a)	simplest (whole number) ratio of each type of atom in a formula (1)	1	allow simplest ratio of moles of each element in a compound not shortened form of formula
	(b)	1/12 th the mass of a carbon-12 (atom) (1)	1	
		Total	2	

Question		Answer	Marks	Guidance
10	(a)	<p>any two from</p> <p>idea of depletion of ozone layer (1)</p> <p>allows more UV to reach Earth's surface (1)</p> <p>increases the risk of skin cancer, cataracts or crop damage (1)</p> <p>CFCs make chlorine atoms / CFCs make (free) radicals (1)</p> <p>CFCs only slowly removed from atmosphere (1)</p> <p>they are greenhouse gases (1)</p> <p>global warming (1)</p>	2	<p>allow makes holes in the ozone layer</p> <p>allow lets more UV through</p> <p>allow slow to degrade / inert</p>
	(b)	shared pair of electrons split one to each chlorine atom (1)	1	
		Total	3	

Question		Answer	Marks	Guidance
11	(a)	(i) (temporary) hardness is removed by boiling (1) table shows all hardness removed by boiling (1)	2	allow on boiling result goes to same as control value 1cm ³
	(ii)	idea of a control (1)	1	e.g. so can compare other samples to it allow to give a baseline ignore distilled water contains very little hardness
	(b)	$\text{CaCO}_3 + \text{H}_2\text{O} + \text{CO}_2 \rightarrow \text{Ca}(\text{HCO}_3)_2$ formulae on LHS (1) formula on RHS and equation balanced (1)	2	allow any correct multiple eg $2\text{CaCO}_3 + 2\text{H}_2\text{O} + 2\text{CO}_2 \rightarrow 2\text{Ca}(\text{HCO}_3)_2$ allow $\text{CaCO}_3 + \text{H}_2\text{CO}_3 \rightarrow \text{Ca}(\text{HCO}_3)_2$ allow = for arrow not 'and' or '&' for + allow one mark for correct equation with incorrect use of upper and lower case formulae eg $\text{CACO}_3 + \text{H}_2\text{O} + \text{CO}_2 \rightarrow \text{Ca}(\text{HCO}_3)_2$
		Total	5	

B642/02

Mark Scheme

January 2012

Question		Answer	Marks	Guidance
13	(a)	$C_9H_8O_4$ (1)	1	allow any order not $C^9H^8O^4$
	(b)	similarities both contain ring of 6 carbon atoms / both contain carbon / both contain hydrogen / both contain oxygen / both contain C=O (1) differences aspirin contains fewer atoms / paracetamol contains nitrogen / ora (1)	2	allow contain a double bond
		Total	3	

Question		Answer	Marks	Guidance
14	(a)	idea of barrier / stop water, oxygen or air reaching iron (1)	1	protects the iron is not sufficient
	(b)	magnesium more reactive than iron / magnesium loses electrons in preference to iron / magnesium reacts first (1)	1	allow sacrificial protection
	(c)	iron + water + oxygen \rightarrow hydrated iron(III) oxide LHS (1) RHS (1)	2	
		Total	4	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

© OCR 2012

