

H

B642/02

GENERAL CERTIFICATE OF SECONDARY EDUCATION
GATEWAY SCIENCE
CHEMISTRY B

Unit 2 Modules C4 C5 C6 (Higher Tier)

WEDNESDAY 18 JUNE 2008

Afternoon
 Time: 1 hour

Candidates answer on the question paper.

Additional materials (enclosed):

None

Calculators may be used.

Additional materials: Pencil
 Ruler (cm/mm)

Candidate
 Forename

Candidate
 Surname

Centre
 Number

<input type="text"/>				
----------------------	----------------------	----------------------	----------------------	----------------------

Candidate
 Number

<input type="text"/>	<input type="text"/>	<input type="text"/>	<input type="text"/>
----------------------	----------------------	----------------------	----------------------

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **60**.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE		
Section	Max.	Mark
A	20	
B	20	
C	20	
TOTAL	60	

This document consists of **19** printed pages and **1** blank page.

Answer **all** the questions.

Section A – Module C4

1 Diamond and graphite have different properties and different uses.

Look at the table.

It shows some information about the properties of diamond and graphite.

property	diamond	graphite
state at room temperature	solid	solid
appearance at room temperature	colourless, clear and lustrous	dull black
melting point	very high	very high
hardness	very hard	soft
solubility in water	insoluble	insoluble
electrical conductivity	does not conduct	good conductor

(a) Diamond is used in jewellery.

This is because diamond is colourless, clear and lustrous.

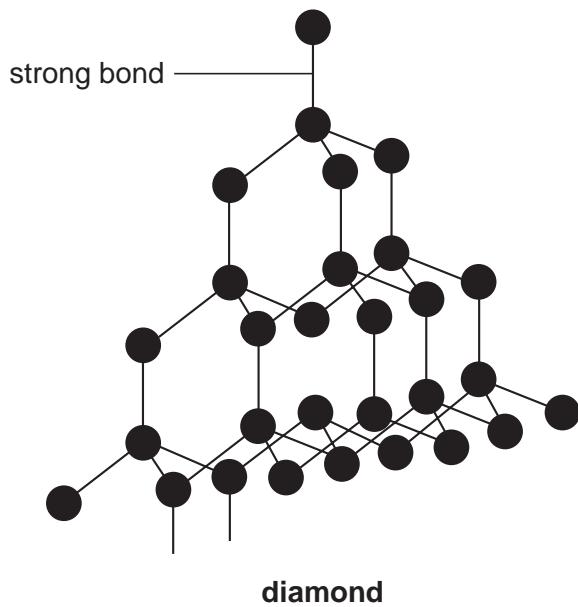
Diamond is also used to make cutting tools.

Write about **two** properties of diamond that make it suitable for cutting tools.

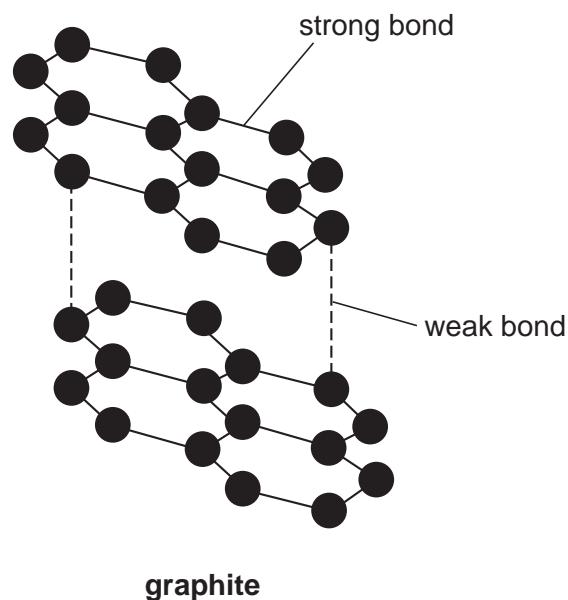
Use the table to help you.

.....

.....


.....

.....


[2]

(b) Look at the structures of diamond and graphite.

● = carbon atom

diamond

graphite

(i) Diamond and graphite both have very high melting points.

Explain why.

Use ideas about their structure.

.....
.....

[1]

(ii) Graphite conducts electricity.

Explain why.

Use ideas about its structure.

.....
.....

[1]

[Total: 4]

2 Natalie enjoys gardening.

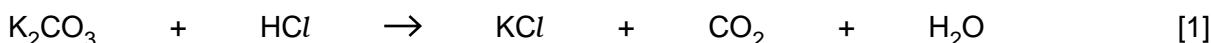
She uses the internet to find out about fertilisers.

She finds out that ammonium nitrate, NH_4NO_3 , improves leaf and stem growth.

(a) Ammonium nitrate can be made by reacting an alkali with an acid.

(i) What is the name of the alkali needed?

..... [1]


(ii) What is the name of the acid needed?

..... [1]

(b) Natalie finds out that potassium chloride can also be used as a fertiliser.

Potassium chloride can be made by reacting potassium carbonate with hydrochloric acid.

Balance the **symbol** equation for this reaction.

(c) Natalie makes some potassium chloride.

She uses 2.76 g of potassium carbonate.

She **predicts** she should make 1.49 g of potassium chloride.

(i) Natalie **actually** makes 0.596 g of potassium chloride.

What is her percentage yield?

.....

percentage yield = % [2]

(ii) In another experiment, Natalie uses less potassium carbonate.

This time she uses 1.38 g of potassium carbonate.

How much potassium chloride does she **predict** she will make?

.....

predicted mass of potassium chloride made = g [1]

(d) Natalie also finds out that there are problems when farmers use too much fertiliser.

One problem is called **eutrophication**.

Write about eutrophication.

Your answer should include

- how it happens
- the effect of eutrophication.

.....

.....

.....

.....

.....

[3]

[Total: 9]

3 Jack investigates some reactions of dilute sulfuric acid.

(a) Jack adds some sodium hydroxide solution to dilute sulfuric acid.

Sodium hydroxide is an alkali.

The pH value of the acid increases as the sodium hydroxide is added.

(i) Explain why the pH value increases.

.....
.....

[1]

(ii) A salt is made when sodium hydroxide reacts with dilute sulfuric acid.

What is the name of this salt?

.....

[1]

(b) Jack also uses the internet to investigate sulfuric acid, H_2SO_4 .

He finds out that dilute sulfuric acid contains ions.

One of these is the sulphate ion, SO_4^{2-} .

Write down the name or formula of another **ion** found in dilute sulfuric acid.

.....

[1]

[Total: 3]

4 River water sometimes contains dissolved salts, pollutants, microbes and insoluble materials.

River water must be purified before it can be used as drinking water.

Water purification involves filtration, sedimentation and then chlorination.

(a) Chlorination kills microbes.

What happens during the filtration stage of water purification?

..... [1]

(b) Even after purification, the water obtained may still contain some poisonous pollutants.

Suggest why.

.....

..... [1]

(c) Sea water is a possible source of drinking water.

(i) Describe one way of getting drinking water from sea water.

..... [1]

(ii) Using sea water to make large quantities of drinking water is expensive.

Explain why.

.....

..... [1]

[Total: 4]


Section B – Module C5

5 This question is about acid-base titrations.

Judy wants to find out the volume of dilute nitric acid needed to neutralise 25.0 cm³ of an alkali.

The alkali used is potassium hydroxide solution.

Look at the apparatus she uses.

She adds dilute nitric acid slowly until the litmus suddenly changes colour.

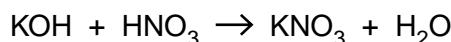
She repeats the experiment two more times.

Look at Judy's results table.

titration number	1	2	3
final burette reading in cm ³	29.7	27.0	34.8
initial burette reading in cm ³	8.5	6.9	14.9
volume of acid used (titre) in cm ³	21.2	20.1	19.9

(a) It is important that the colour of the indicator changes suddenly.

Suggest why Judy cannot use universal indicator instead of litmus.


..... [1]

(b) Judy decides to only use the second and third titration results.

Explain why.

..... [1]

(c) Look at the balanced symbol equation for the reaction between potassium hydroxide and nitric acid.

(i) The concentration of the potassium hydroxide solution is 0.100 mol/dm^3 .

Calculate the number of moles in 25.0 cm^3 of the potassium hydroxide solution.

.....
.....

number of moles of potassium hydroxide = [1]

(ii) Use your answer to (i) to work out the number of moles of nitric acid that will react with the potassium hydroxide.

.....
.....

number of moles of nitric acid = [1]

(iii) Calculate the concentration, in mol/dm^3 , of the dilute nitric acid.

Use the

- average titre of titrations 2 and 3
- answer to part (ii).

.....
.....
.....

concentration of nitric acid = mol/dm^3 [2]

[Total: 6]

10

6 Silicon dioxide and iron(III) hydroxide have been discovered on the planet Mars.

(a) Silicon dioxide, SiO_2 , has a molar mass of 60 g/mol.

Calculate the molar mass of iron(III) hydroxide, Fe(OH)_3 .

The relative atomic mass (A_r) for H is 1, for O is 16, for Si is 28 and for Fe is 56.

.....

molar mass = g/mol

[1]

(b) Compound X has been discovered on the planet Mars.

Compound X has the empirical formula CH.

Which two formulae could be compound X?

Choose from the list.

CH_4

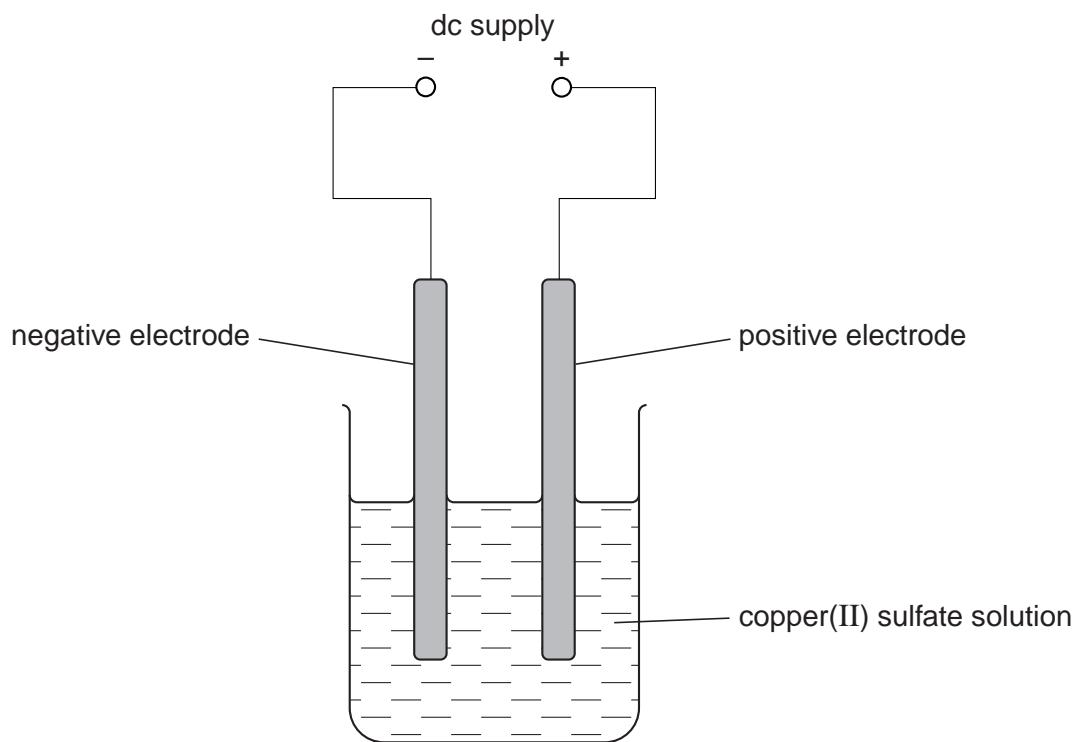
C_2H_2

C_2H_6

C_4H_8

C_6H_6

$\text{C}_{10}\text{H}_{22}$


answer and [2]

[Total: 3]

7 Azhar does an electrolysis experiment.

He uses copper(II) sulfate solution.

Look at the apparatus he uses.

Azhar uses copper electrodes.

(a) Which **two** of the following observations are correct?

Put a tick (✓) next to each of the **two** correct answers.

The positive electrode gets plated with copper.

A colourless gas is made at the negative electrode.

The blue colour of the electrolyte becomes colourless.

The negative electrode gains mass.

The positive electrode loses mass.

[2]

(b) Azhar decides to replace copper(II) sulfate solution with solid copper(II) sulfate.

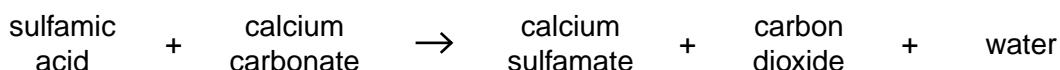
Electrolysis does not happen.

Explain why.

.....
.....

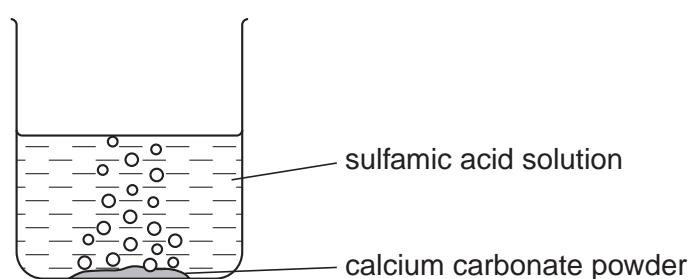
[1]

[Total: 3]


[Turn over]

12

8 Sulfamic acid solution is used to remove limescale in kettles.


Limescale is mostly calcium carbonate.

Sulfamic acid reacts with calcium carbonate as shown in the equation.

Robin investigates sulfamic acid solution.

Look at the diagram.

Robin adds 0.20 g of calcium carbonate powder to 100 cm³ of sulfamic acid solution.

At the start of the reaction there is a lot of fizzing.

After a minute there is still some calcium carbonate powder left, but the fizzing has stopped.

(a) Why does the reaction stop?

.....
.....

[1]

(b) Describe an experiment to measure the volume of carbon dioxide made in this reaction.

A labelled diagram will help you answer this question.

.....
.....
.....

[2]

13

(c) In an experiment, 0.030 mol of carbon dioxide is made.

What is the volume, measured at room temperature and pressure, of this amount of carbon dioxide?

One mole of any gas occupies 24 dm³ at room temperature and pressure.

.....
.....

volume of carbon dioxide = dm³ [1]

[Total: 4]

9 Sulfuric acid is made in the Contact Process.

Look at the symbol equation. It describes one reaction that happens in the Contact Process.

The conditions used for this reaction are

- a temperature of 450 °C
- atmospheric pressure
- a V₂O₅ catalyst.

Explain the three conditions used in this reaction.

Use ideas about

- rate of reaction
- position of equilibrium.

temperature of 450 °C

.....
.....
.....

atmospheric pressure

.....
.....
.....

V₂O₅ catalyst

.....
.....

[4]

[Total: 4]

[Turn over]

10 This question is about fuel cells.

Fuel cells use hydrogen and oxygen.

Fuel cells make water and release energy.

(a) Write a **word** equation for the reaction in a hydrogen-oxygen fuel cell.

..... + → [1]

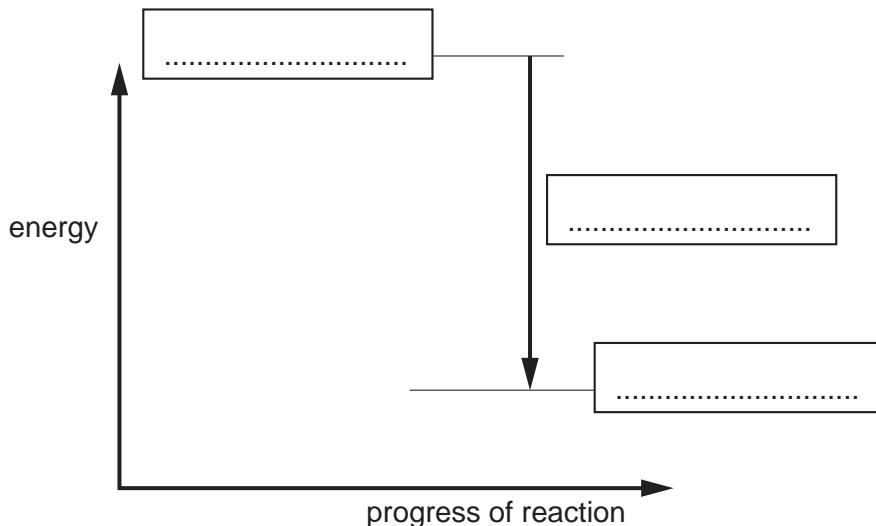
(b) Fuel cells are used in spacecraft.

Write down one **advantage** of using fuel cells rather than batteries in spacecraft.

..... [1]

(c) Look at the energy level diagram for the reaction taking place in a fuel cell.

Label the diagram.


Choose words from the list.

catalyst

energy change

product

reactants

[3]

(d) What is the name given to all reactions that give out heat?

..... [1]

[Total: 6]

11 This question is about rusting.

(a) One way to stop iron rusting is to paint it.

Why does painting stop the iron from going rusty?

.....
.....

[1]

(b) The rusting of iron involves both **oxidation** and **reduction**.

What is the name of this type of process?

Choose from the list.

displacement

fermentation

oxred

redox

answer [1]

(c) Two other ways of preventing rusting are galvanising and tinning.

Explain why galvanising works better than tinning.

In your answer include

- how tinning works
- how galvanising works.

.....
.....
.....
.....
.....

[3]

[Total: 5]

16

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

12 This question is about oils and soap.

(a) Vegetable oil is heated with sodium hydroxide solution.

Soap and glycerol are made.

(i) Write a **word** equation for this reaction.

..... [1]

(ii) What is the name for this process?

Choose from the list.

distillation

fermentation

saponification

saturation

answer [1]

(b) Complete the sentence.

Choose a word from the list.

dissolved

immiscible

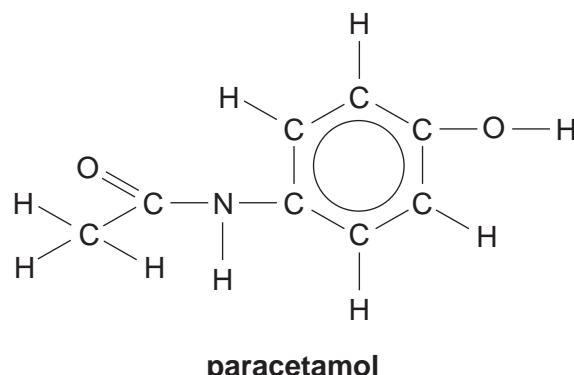
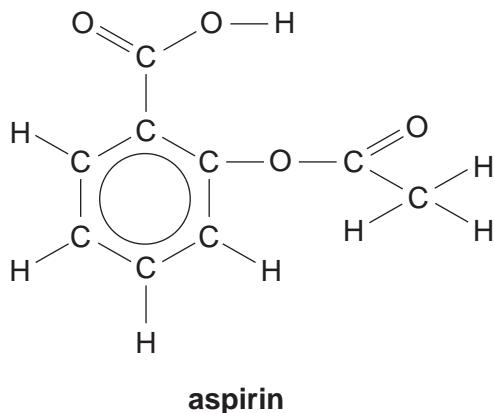
saturated

soluble

Oil and water are liquids which do not mix.

They are said to be [1]

(c) Margarine is made from vegetable oil.



Describe how margarine is manufactured from vegetable oil.

.....
..... [1]

[Total: 4]

13 This question is about analgesics (pain killers).

(a) Look at the displayed formulas of aspirin and paracetamol.

(i) Put numbers into the boxes to complete the molecular formula for **aspirin**.

C H O

[1]

(ii) Write down one **similarity** in the displayed formulas of aspirin and paracetamol.

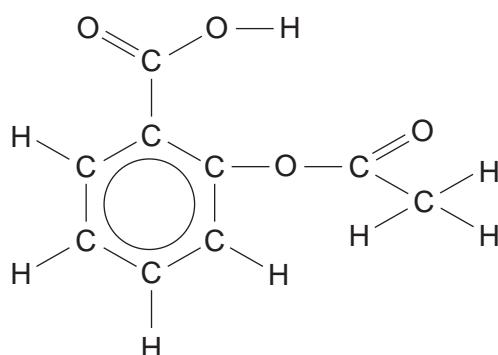
.....

[1]

(iii) Write down one **difference** between the displayed formulas of aspirin and paracetamol.

.....

[1]


(b) Many people use **soluble** aspirin.

(i) Write down one **advantage** that soluble aspirin has compared to an insoluble aspirin tablet.

..... [1]

(ii) What change is made to the structure of aspirin to make it soluble?

You may use the diagram to help you.

.....
.....

[1]

[Total: 5]

END OF QUESTION PAPER

The Periodic Table of the Elements

1	2	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="text-align: center; padding: 10px;"> 1 H hydrogen </td></tr> </table>										1 H hydrogen
1 H hydrogen												
Key		relative atomic mass atomic symbol atomic name atomic (proton) number										
39	40	45	48	51	52	55	56	101	101	190	[277]	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Ru	Os	Os	Hs	
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	ruthenium	osmium	osmium	hassium	
19	20	21	22	23	24	25	26	43	44	76	108	
85	88	89	91	93	96	[98]	[101]	101	101	190	[277]	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Ru	Ru	Os	Hs	
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	ruthenium	ruthenium	osmium	hassium	
37	38	39	40	41	42	43	44	44	44	76	108	
133	137	139	178	181	184	186	186	186	186	190	[277]	
Cs	Ba	La*	Hf	Ta	W	Re	Re	Re	Re	Os	Hs	
caesium	barium	lanthanum	hafnium	tantalum	tungsten	rhenium	rhenium	rhenium	rhenium	osmium	hassium	
55	56	57	72	73	74	75	75	75	75	76	108	
[223]	[226]	[227]	[261]	[262]	[266]	[264]	[264]	[264]	[264]	[277]	[277]	
Fr	Ra	Ac*	Rf	Db	Sg	Bh	Bh	Bh	Bh	Bh	Bh	
francium	radium	actinium	rutherfordium	dubnium	seaborgium	bohrium	bohrium	bohrium	bohrium	bohrium	bohrium	
87	88	89	104	105	106	107	107	107	107	108	108	

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.