

F

A215/01

GENERAL CERTIFICATE OF SECONDARY EDUCATION
TWENTY FIRST CENTURY SCIENCE
ADDITIONAL SCIENCE A

Unit 1 Modules B4 C4 P4 (Foundation Tier)

WEDNESDAY 23 JANUARY 2008

Afternoon

Time: 40 minutes

Candidates answer on the question paper.

Additional materials (enclosed):

None

Calculators may be used.

Additional materials: Pencil
Ruler (cm/mm)

Candidate
Forename

Candidate
Surname

Centre
Number

<input type="text"/>				
----------------------	----------------------	----------------------	----------------------	----------------------

Candidate
Number

<input type="text"/>	<input type="text"/>	<input type="text"/>	<input type="text"/>
----------------------	----------------------	----------------------	----------------------

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- Do **not** write outside the box bordering each page.
- Write your answer to each question in the space provided.

FOR EXAMINER'S USE

Qu.	Max	Mark
1	3	
2	4	
3	4	
4	3	
5	4	
6	5	
7	5	
8	4	
9	5	
10	5	
TOTAL	42	

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **42**.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

This document consists of **16** printed pages.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

$$\text{speed} = \frac{\text{distance travelled}}{\text{time taken}}$$

$$\text{momentum} = \text{mass} \times \text{velocity}$$

$$\text{change of momentum} = \text{resultant force} \times \text{time for which it acts}$$

$$\text{work done by a force} = \text{force} \times \text{distance moved by the force}$$

$$\text{change in energy} = \text{work done}$$

$$\text{change in GPE} = \text{weight} \times \text{vertical height difference}$$

$$\text{kinetic energy} = \frac{1}{2} \times \text{mass} \times [\text{velocity}]^2$$

Electric Circuits

$$\text{resistance} = \frac{\text{voltage}}{\text{current}}$$

$$\frac{V_p}{V_s} = \frac{N_p}{N_s}$$

$$\text{energy transferred} = \text{power} \times \text{time}$$

$$\text{power} = \text{potential difference} \times \text{current}$$

$$\text{efficiency} = \frac{\text{energy usefully transferred}}{\text{total energy supplied}} \times 100\%$$

The Wave Model of Radiation

$$\text{wave speed} = \text{frequency} \times \text{wavelength}$$

Answer **all** the questions.

1 Bobby watches a stage magician.

The magician throws a handful of powder into a flame. The flame turns green.

Bobby realises that the powder contains copper.

(a) How does Bobby know the powder contains copper?

Put ticks (✓) in the boxes next to the **two** best reasons.

It is a magic trick.

Many elements change the colour of the flame.

Stage magicians always use copper.

Copper conducts electricity.

An element always turns the flame the same colour.

Copper is cheap.

[2]

(b) Bobby uses a special instrument to look at the flame.

He sees a series of lines.

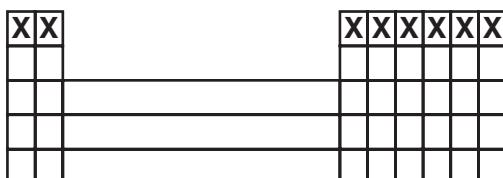
Put a **ring** around the best name for a series of lines like this.

amplitude

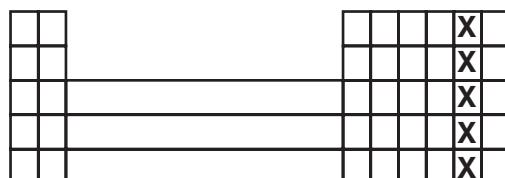
frequency

line spectrum

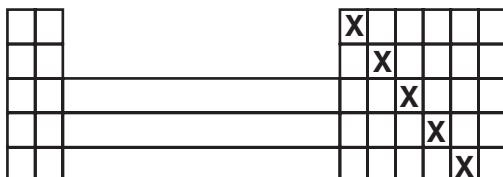
wavelength

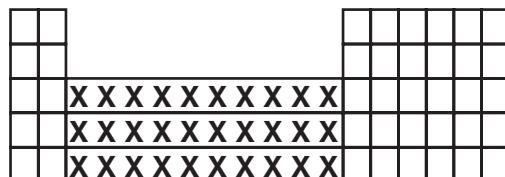

[1]

[Total: 3]


2 (a) Look at these diagrams of the Periodic Table.

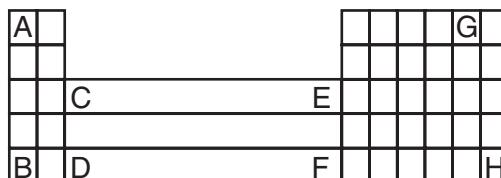
Some elements are marked with an X.


A


B

C

D


(i) Which diagram, A, B, C or D, shows a **group** of elements?

answer [1]

(ii) Which diagram, A, B, C or D, shows a **period** of elements?

answer [1]

(b) Which **two** letters below represent **non-metals**?

answer and [2]

[Total: 4]

3 Jenny studies three elements, **Li**, **Na** and **K**.

She finds this information in a data booklet.

Li		
Na		
K		

	melting point °C	boiling point °C
Li	180	1342
Na		883
K	63	

PERIODIC TABLE

(a) Suggest a melting point for **Na**.

answer [1]

(b) Suggest a boiling point for **K**.

answer [1]

(c) Another data book gives the boiling point for **Li** as 1330 °C instead of 1342 °C. Jenny thinks of some reasons for this.

Put a tick (✓) in the box next to the best reason.

Boiling points increase each time they are measured.

The measurements were made with different amounts of Li.

It is difficult to measure such a high boiling point accurately.

The second book rounded the numbers to the nearest ten degrees.

[1]

(d) Potassium reacts with chlorine gas to make potassium chloride.

What is the formula of **potassium chloride**?

answer [1]

[Total: 4]

4 Jenny fills in a table about the halogens at room temperature and pressure.

Use words from the lists below to complete the table.

solid	green
liquid	grey
gas	red/brown
	white
	yellow

name of element	state of element	colour of element
chlorine		
bromine		
iodine		

[3]

[Total: 3]

5 The diagram shows the forces acting on a helicopter in level flight.

(a) What is the **direction** of the resultant force on the helicopter?

Put a **ring** around the correct answer.

backwards **downwards** **forwards** **upwards** [1]

(b) What is the **size** of the resultant force on the helicopter?

Put a **ring** around the correct answer.

1 kN **2 kN** **3 kN** **5 kN** **12 kN** [1]

(c) Which quantities will be **increasing** for the helicopter?

Put ticks (**✓**) in the boxes next to the **two** correct answers.

Height

Weight

Momentum

Kinetic energy

Gravitational potential energy

[2]

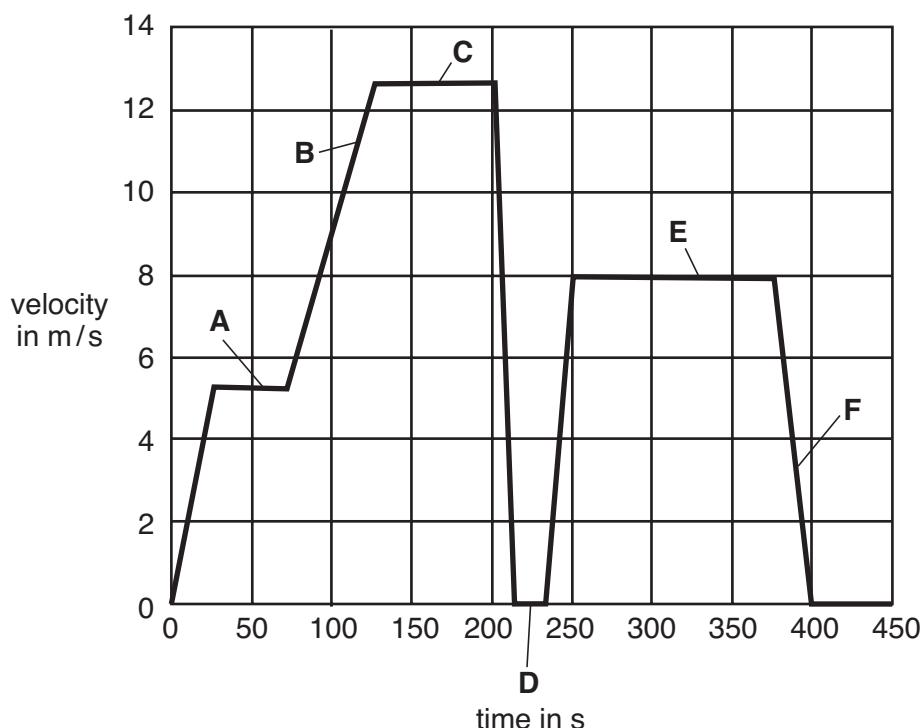
[Total: 4]

6 Paul drives a taxi in town.

(a) A journey of 3000 m takes him 400 s.

How does Paul calculate his average speed for the journey?

Put a **ring** around the correct answer.


$$\frac{3000}{400}$$

$$3000 \times 400$$

$$\frac{400}{3000}$$

[1]

(b) Here is a velocity-time graph for Paul's journey.

Write the correct letter, **A**, **B**, **C**, **D**, **E** or **F**, in each box.

Stopped at traffic lights.

Moving at a steady top speed.

Slowing down at the end of the journey.

[2]

(c) Paul wears a seat belt. He brakes suddenly at traffic lights.

Draw a straight line from the **start** of each sentence to its correct **end**.

start

end

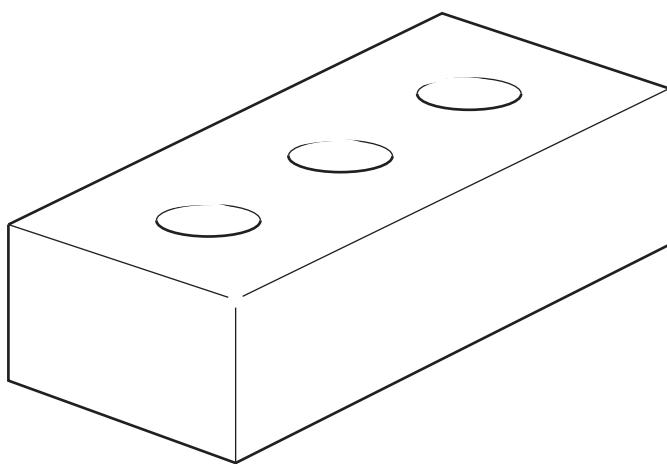
Using the brakes of the car ...

... applies a counter force to Paul.

The seatbelt in the car ...

... transfers kinetic energy by heating.

The momentum of the car ...


... is reduced by friction between tyres and road.

[2]

[Total: 5]

10

7 Julie drops a brick down a deep well.

The brick falls through the air until it hits the water.

(a) Finish the sentences. Choose words from this list.

gravitational potential energy

kinetic energy

mass

volume

weight

work

The brick is pulled down by its

As it falls, the brick loses

but gains

[3]

(b) The brick has a weight of 20 N. It falls for 4 s before it hits the water.

The momentum of the brick changes as it falls through the air.

How do you calculate the change in momentum?

Put a **ring** around the correct answer.

$$\frac{20}{4}$$

$$20 \times 4$$

$$\frac{4}{20}$$

[1]

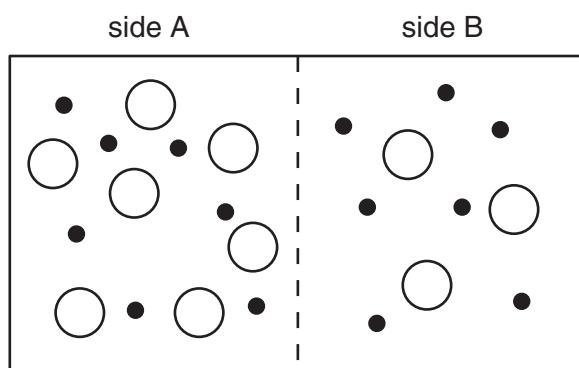
11

(c) The brick hits the water and slows down.

It now falls through the water at a **steady speed**.

Put a tick (✓) in the box next to the **one** correct explanation for this.

Friction transfers momentum out of the brick.


The brick has no weight when it is under water.

Friction transfers energy from the brick by heating.

[1]

[Total: 5]

8 Andrew draws a model to show osmosis.

= glucose molecule

= water molecule

= partially permeable membrane

(a) What does side B in the model represent?

Put a tick (✓) in the box next to the correct answer.

A concentrated solution.

A dilute solution.

Pure water.

[1]

(b) Why did Andrew include a partially permeable membrane in his model?

Put a tick (✓) in the box next to the correct answer.

To stop glucose molecules and water molecules from passing through.

To stop glucose molecules from passing through.

To stop water molecules from passing through.

[1]

13

(c) What happens to the water molecules?

Put a tick (✓) in the box next to the correct answer.

Water molecules move mostly from side **A** to side **B**.

Water molecules move mostly from side **B** to side **A**.

Water molecules move equally between side **A** and side **B**.

Water molecules do not move between side **A** and side **B**.

[1]

(d) What will happen when Andrew adds four more glucose molecules to **side B** in his model?

Put a tick (✓) in the box next to the correct answer.

Water molecules move mostly from side **A** to side **B**.

Water molecules move mostly from side **B** to side **A**.

Water molecules move equally between side **A** and side **B**.

Water molecules do not move between side **A** and side **B**.

[1]

[Total: 4]

9 This question is about enzymes.

(a) What are enzymes made of?

Put a **ring** around the correct answer.

carbohydrates

lipids

proteins

[1]

(b) Enzymes can speed up the breakdown of molecules.

Which of the following statements are **true** and which are **false**?

Write **true** or **false** in the box next to each statement.

true
or false

Enzymes can make reactions go faster.

Enzymes will only work in test tubes.

Enzymes stop working at very high temperatures.


Enzymes work best at one particular temperature.

[2]

(c) Enzymes can speed up the breakdown of molecules.

The process involves a number of stages.

The stages are **not** drawn in the correct order.

Fill in the boxes to show the right order. The first one has been done for you.

C			
---	--	--	--

[2]

[Total: 5]

10 This question is about the kidneys.

(a) Here are some things that affect the amount of water in the body.

breathing	faeces	respiration
drinks	food	sweating

Which put water **into** the body?

Which take water **out** of the body?

Complete the table by writing the words in the correct boxes.

All of the words should be used.

water into the body	water out of the body

[3]

(b) Drinking large amounts of alcoholic drinks can cause dehydration.

Why does this happen?

Put a tick (✓) in the box next to the correct answer.

The kidneys stop working totally.

The kidneys produce more urine.

The kidneys produce less urine.

[1]

(c) If someone uses the drug ecstasy they produce small amounts of very strong urine.

Draw **one** straight line from the correct change in the **volume of urine** to the correct change in its **concentration** caused by the drug ecstasy.

volume of urine	concentration
greater	less dilute
smaller	more dilute
stays the same	stays the same

[1]

[Total: 5]

END OF QUESTION PAPER

The Periodic Table of the Elements

1

2

3 4 5 6 7 0

7	Li	9	Be	1	H
lithium	beryllium			hydrogen	
3	4			1	

Key

relative atomic mass
atomic symbol
atomic (proton) number

40	Ca	45	Sc	48	Ti	51	Cr	52	Mn	55	Fe	59	Co	63.5	Ni	65	Ga	73	Ge	75	As	80	Br	84		
potassium	calcium	20	scandium	21	titanium	22	vanadium	23	manganese	25	iron	26	cobalt	27	nickel	28	zinc	31	germanium	32	arsenic	33	selenium	34	krypton	36
19																										
85	88	89	91	93	Nb	96	Mo	[98]	Tc	101	Ru	103	Rh	112	Cd	115	In	119	Sb	122	Te	128	I	131		
Rb	Sr	Y	Zr	Nb	niobium	41	molybdenum	42	technetium	43	ruthenium	44	rhodium	45	cadmium	48	indium	49	tin	50	antimony	51	tellurium	52	iodine	53
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	
133	137	139	178	181	184	186	188	190	192	195	197	201	204	207	209	210	211	212	213	214	215	216	217	218	219	
Cs	Ba	La*	Hf	Ta	W	Rh	Ta	Os	Ir	Pt	Hg	Tl	Pb	Bi	Po	At	Rn	Fr	Ra	Ac*	Db	Mt	Rg	Xe	radon	
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	
[223]	[226]	[227]	[261]	[262]	[266]	[264]	[268]	[277]	[271]	[272]	[271]	[272]	[272]	[272]	[272]	[272]	[272]	[272]	[272]	[272]	[272]	[272]	[272]	[272]	[272]	
Fr	Ra	Ac*	Rf	Dubnium	Seaborgium	Bh	Bohrium	Hs	Mt	Mt	Meitnerium	109	110	111	112	113	114	115	116	117	118	119	120	121	122	
francium	radium	actinium	rutherfordium	dubnium	seaborgium	bohrium	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	
87																										

11	B	12	C	14	N	16	O	19	F	20	He
boron	carbon	6	nitrogen	7	oxygen	8	fluorine	9	neon	10	helium
5											2
27	Al	28	Si	31	P	32	S	35.5	Cl	40	Ar
aluminum	silicon	14	phosphorus	15	sulfur	16	chlorine	17	argon	18	

Elements with atomic numbers 112-116 have been reported but not fully authenticated

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.