

F

A217/01

GENERAL CERTIFICATE OF SECONDARY EDUCATION
TWENTY FIRST CENTURY SCIENCE
ADDITIONAL SCIENCE A

Unit 3 Modules B6 C6 P6 (Foundation Tier)

FRIDAY 20 JUNE 2008

Morning

Time: 40 minutes

* C U P / T 4 5 3 6 3 *

Candidates answer on the question paper.

Additional materials (enclosed):

None

Calculators may be used.

Additional materials: Pencil
 Ruler (cm/mm)

Candidate
 Forename

Candidate
 Surname

Centre
 Number

<input type="text"/>				
----------------------	----------------------	----------------------	----------------------	----------------------

Candidate
 Number

<input type="text"/>	<input type="text"/>	<input type="text"/>	<input type="text"/>
----------------------	----------------------	----------------------	----------------------

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE

Qu.	Max.	Mark
1	5	
2	4	
3	5	
4	4	
5	5	
6	5	
7	3	
8	3	
9	4	
10	4	
TOTAL	42	

This document consists of **19** printed pages and **1** blank page.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

$$\text{speed} = \frac{\text{distance travelled}}{\text{time taken}}$$

$$\text{momentum} = \text{mass} \times \text{velocity}$$

$$\text{change of momentum} = \text{resultant force} \times \text{time for which it acts}$$

$$\text{work done by a force} = \text{force} \times \text{distance moved by the force}$$

$$\text{change in energy} = \text{work done}$$

$$\text{change in GPE} = \text{weight} \times \text{vertical height difference}$$

$$\text{kinetic energy} = \frac{1}{2} \times \text{mass} \times [\text{velocity}]^2$$

Electric Circuits

$$\text{resistance} = \frac{\text{voltage}}{\text{current}}$$

$$\frac{V_p}{V_s} = \frac{N_p}{N_s}$$

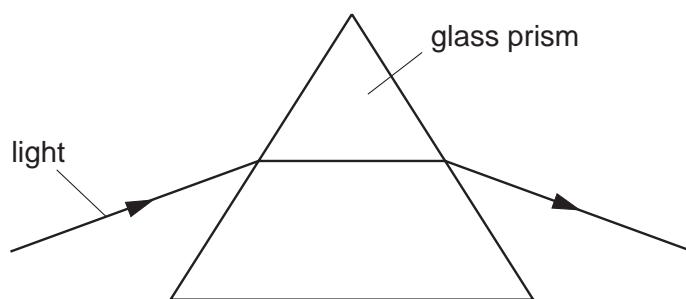
$$\text{energy transferred} = \text{power} \times \text{time}$$

$$\text{power} = \text{potential difference} \times \text{current}$$

$$\text{efficiency} = \frac{\text{energy usefully transferred}}{\text{total energy supplied}} \times 100\%$$

The Wave Model of Radiation

$$\text{wave speed} = \text{frequency} \times \text{wavelength}$$

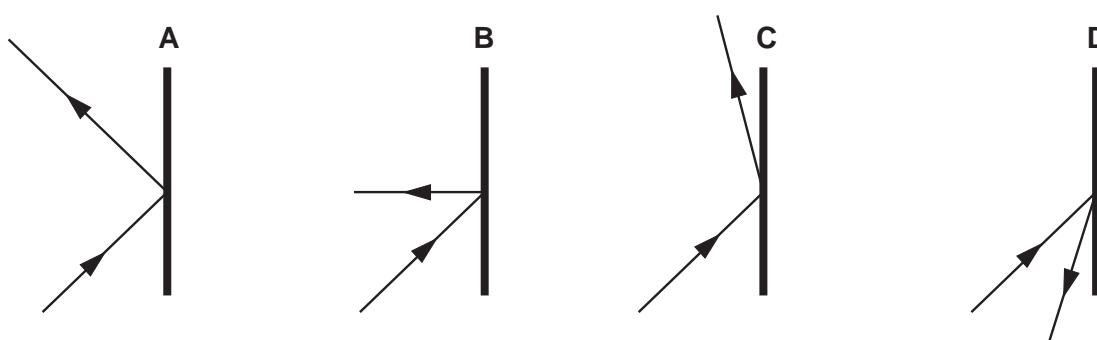

BLANK PAGE

Question 1 starts on page 4.

PLEASE DO NOT WRITE ON THIS PAGE

Answer **all** the questions.

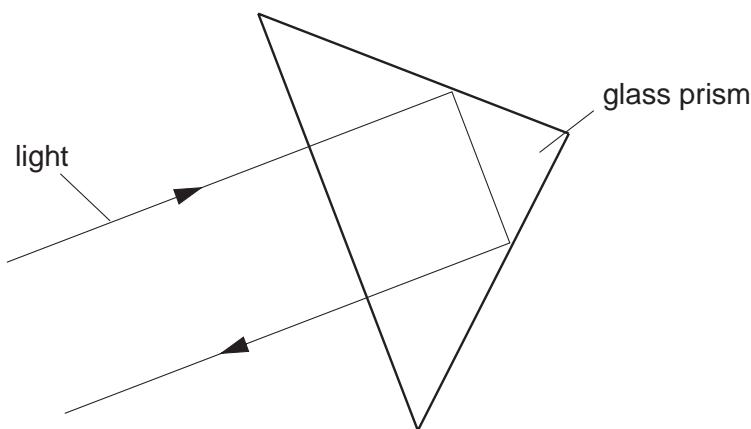
1 This diagram shows a beam of light passing through a glass prism.


(a) Which **one** property of the light changes as it passes from air into glass?

Put a ring around the correct answer.

colour frequency speed

[1]


(b) Light reflects off a mirror.

Which **one** of these diagrams, **A**, **B**, **C** or **D**, correctly shows light reflecting off a mirror?

answer [1]

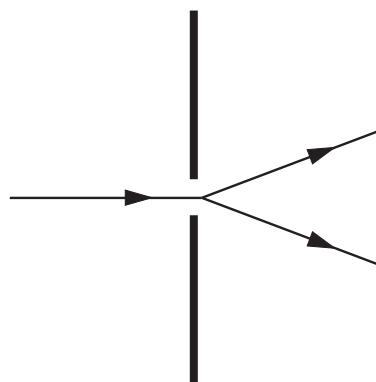
(c) Light can also reflect off the surface of a glass prism.

Some of these statements are true. Others are false.

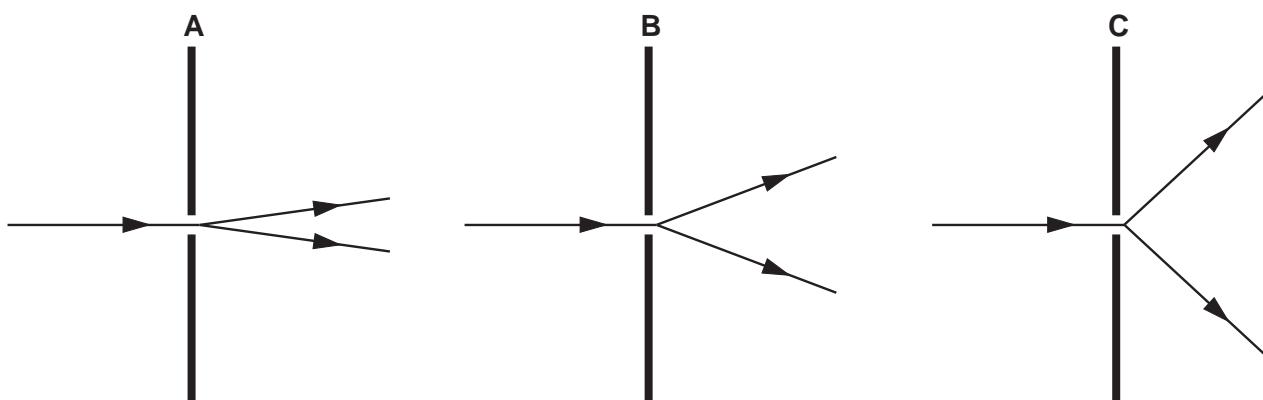
Write **T** in the box next to each **true** statement and **F** in the box next to each **false** one.

T (true)
or
F (false)

Some of the light is lost at each reflection.


The diagram shows total internal reflection.

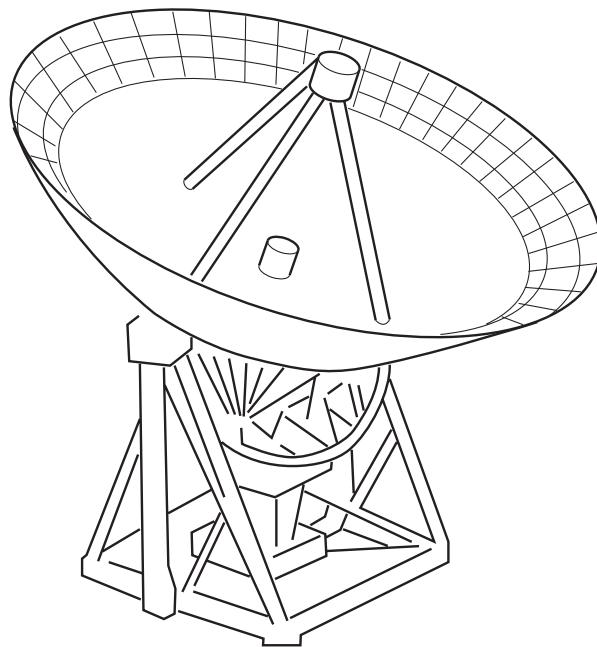
The light beams in the prism interfere with each other.


Once the light gets into the prism it cannot get out again.

[2]

(d) Light diffracts when it passes through a small gap.

The gap is made smaller.



Which diagram, **A**, **B** or **C**, shows what happens when the gap is made smaller?

answer [1]

[Total: 5]

2 Large metal dishes receive radio waves from satellites in space.

(a) Here are some reasons why radio waves are used to communicate with satellites in space.

Put ticks (✓) in the boxes next to the **two** correct reasons.

Radio waves are ...

... not absorbed by the atmosphere.

... able to travel through empty space.

... safer than other electromagnetic waves.

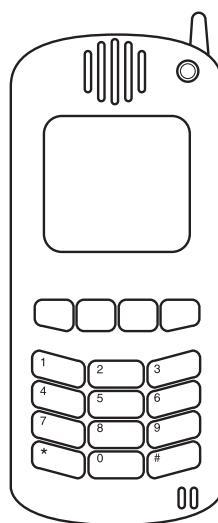
... the fastest of the electromagnetic waves.

... more powerful than other electromagnetic waves.

[2]

(b) Complete the sentences. Choose words from this list.

speed	direction	induction
amplitude	frequency	modulation


Information is put into radio waves by altering their or

This process is called

[2]

[Total: 4]

3 A mobile phone transmits sounds as digital signals, using radio waves.

(a) The phone transmits the sound as a code.

Which **two** symbols are used for the code?

Put a **ring** around each of the **two** correct answers.

0 1 2 F T

[1]

(b) Complete the sentences. Choose words from this list.

amplitude	analogue	frequency
modulator	pulses	receiver

Digital phones are better than phones.

This is because the sound is sent as of radio waves.

These are easily separated from noise at the

[3]

(c) Sound and radio are both waves.

Some of their properties are the same.

Other properties are different.

Put a tick (✓) in the box next to the **one** property that is the same for both.

Both radio waves and sound waves ...

... are strongly absorbed by air.

... have the same velocity in air.

... can travel through empty space.

... decrease in intensity as they travel.

[1]

[Total: 5]

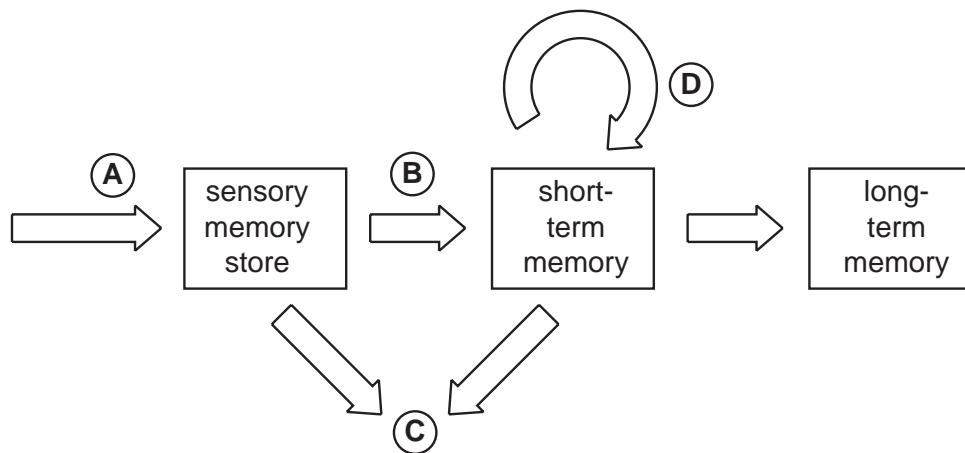
10

4 Andy is sitting an examination.

He has stored information in his memory.

He retrieves this information during the examination.

(a) Where is memory stored?


Put a **ring** around the correct answer.

cerebral cortex **ear** **eye** **motor nerve** **sensory nerve**

[1]

(b) For many years, scientists have tried to model the link between short-term and long-term memory.

One model which explains this link is shown in the diagram. It is called the multi-store model.

The diagram has four stages in the model labelled **A**, **B**, **C** and **D**.

Complete the table by writing the correct letter, **A**, **B**, **C** or **D**, in the box next to each stage.

stage in the model	letter
environmental stimuli received	
information lost	
processing of information	
rehearsing information	

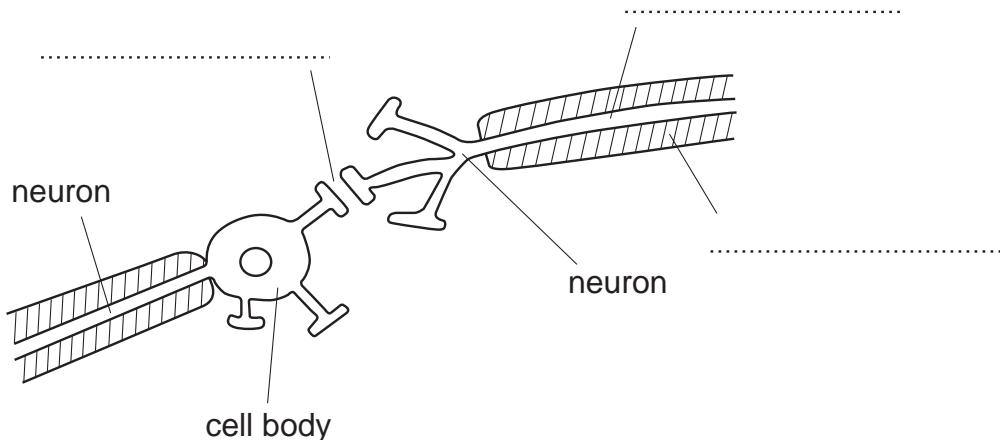
[2]

(c) Liz has Alzheimer's disease.
She has lost her short-term memory.

Which of these things can she do?

Put ticks (✓) in the boxes next to the **two** correct answers.

remember her childhood


remember what happened yesterday

remember her mother's first name

[1]

[Total: 4]

5 Neurons are nerve cells.
The tiny gaps between them are called synapses.

(a) Complete the labelling of the diagram. Choose words from this list.

axon fatty sheath synapse

[2]

(b) Neurons transmit electrical impulses.

Here are some statements about the effect of the fatty sheath on these impulses.

Put a tick (✓) in the box next to the correct statement.

The fatty sheath ...

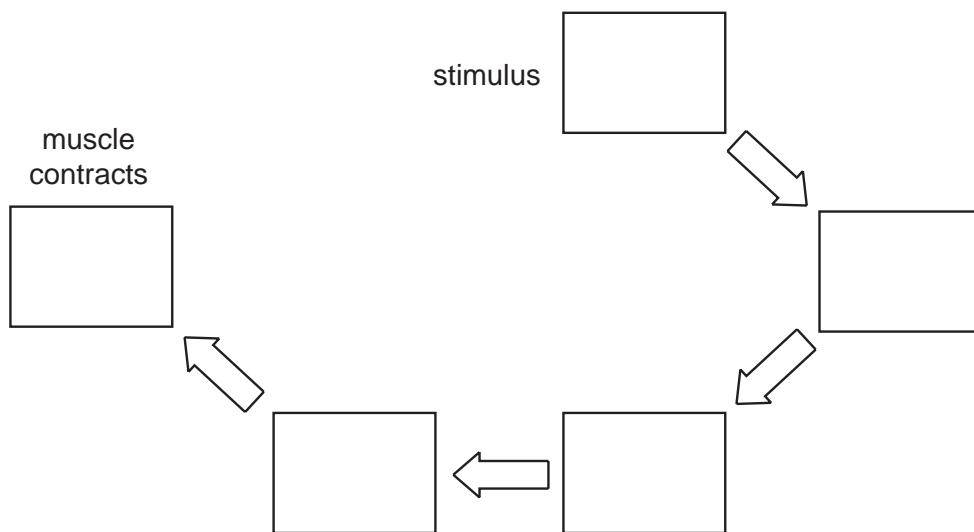
... keeps the nerve cell at the best temperature.

... slows down nerve impulses through the axon.

... provides a source of energy for the nerve cell.

... insulates the neuron from other neurons nearby.

[1]


13

(c) The structures **A**, **B**, **C**, **D** and **E** are found in a reflex arc.

They are in the wrong order.

- A** central nervous system (CNS)
- B** effectors
- C** motor neurons
- D** receptors
- E** sensory neurons

Write one letter, **A**, **B**, **C**, **D** or **E**, in each box of the diagram to show the correct order.

[2]

[Total: 5]

6 Like many animals, pond snails use their nervous system to detect and respond to changes in their environment.

© Roy Anderson

Humans are mammals. Snails are not.

(a) Which **one** of the following structures is found in a human?

Put a **ring** around the correct answer.

eyes on stalks shell spinal cord

[1]

(b) Complete the following sentences. They compare pond snails and humans.

Choose words from this list.

complex involuntary unhelpful reflexes tropisms

Pond snails use simple to find food.

Humans respond better than snails to a new situation because their behaviour is

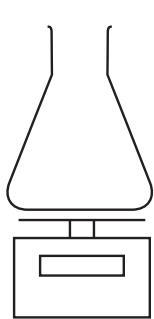
Both humans and snails respond to bright light. This response is

[2]

(c) The pond snail's nervous system contains both receptors and effectors.

Which cells are effectors, which are receptors, and which are neither?

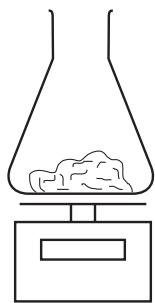
Put a tick (✓) in the correct box for each type of cell.

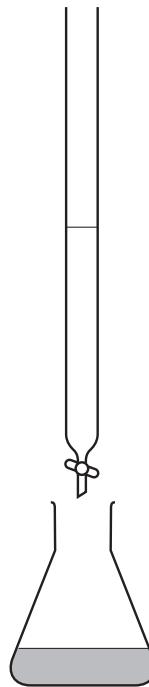

type of cell	effectors	receptors	neither effectors nor receptors
muscle cells			
egg cells			
slime-secreting cells			
light-sensitive cells			

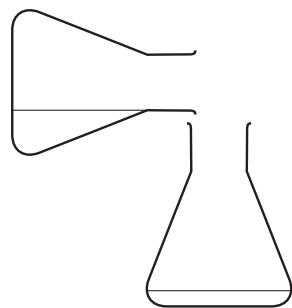
[2]


[Total: 5]

7 Mary wants to analyse a sample of solid alkali. She carries out a titration.


Here are the steps that she carries out. They are in the wrong order.


A
find mass of empty flask


B
add indicator to alkali solution

C
find mass of flask with solid alkali

D
add acid from a burette

E
dissolve solid alkali in water

What is the correct order of the steps?

Fill in the boxes to show the right order. The first one has been done for you.

A				
----------	--	--	--	--

[3]

[Total: 3]

8 Jim reacts some acid with lumps of marble.
Some marble is left at the end of the reaction.

He then repeats the experiment, changing one of the conditions.

Some changes make the reaction go faster.

Some changes make more product.

Draw straight lines from the **faster rate** box to the **changes** which make the reaction faster.

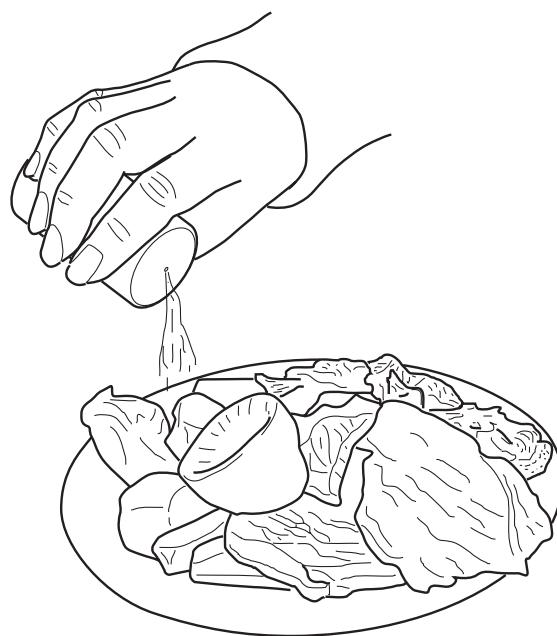
Draw a straight line from the **more product** box to the **change** which makes more product.

changes

use a higher temperature

faster rate

use the same volume of
more concentrated acid


more product

use more lumps of marble

[3]

[Total: 3]

9 This question is about the preparation of salts.

(a) Draw a straight line from each set of **reactants** to the **salt** they form.

reactants

salt

sodium hydroxide and hydrochloric acid

magnesium chloride

sodium hydroxide and sulfuric acid

sodium chloride

magnesium hydroxide and hydrochloric acid

sodium sulfate

magnesium oxide and sulfuric acid

magnesium sulfate

[3]

(b) What salt is formed when calcium hydroxide, $\text{Ca}(\text{OH})_2$, reacts with hydrochloric acid, HCl ?

Put a (ring) around the correct answer.

Ca_2Cl

CaCl

CaCl_2

CaO

[1]

[Total: 4]

10 Baking powder contains small grains of a solid acid and a solid alkali. When you put baking powder into water it starts to fizz slightly.

(a) Which **solid acid** could be used to make baking powder?

Put a **ring** around the correct answer.

ethanoic acid

hydrogen chloride

nitric acid


sulfuric acid

tartaric acid

[1]

(b) Baking powder doesn't react until water is added.

Angela discusses reasons for this with her friends.

Who gives the correct reason why the reaction only happens when water is added?

answer [1]

19

(c) Which particles are produced when an acid dissolves in water?

Put a (ring) around the correct answer.

H₂ H H⁺ OH⁻

[1]

(d) When acids react with metals they give off a gas.

Put a (ring) around the formula of this gas.

H₂ CO₂ O₂ N₂

[1]

[Total: 4]

END OF QUESTION PAPER

Copyright Acknowledgements:

Q.6 photo © Roy Anderson

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

1	2	3	4	5	6	7	0
7 Li lithium 3	9 Be beryllium 4	11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9	20 Ne neon 10
23 Na sodium 11	24 Mg magnesium 12	27 Al aluminum 13	28 Si silicon 14	31 P phosphorus 15	32 S sulfur 16	35.5 Cl chlorine 17	40 Ar argon 18
39 K potassium 19	40 Ca calcium 20	45 Sc scandium 21	48 Ti titanium 22	51 V vanadium 23	52 Cr chromium 24	55 Mn manganese 25	56 Fe iron 26
85 Rb rubidium 37	88 Sr strontium 38	91 Y yttrium 39	93 Nb niobium 40	96 Mo molybdenum 41	101 Ru ruthenium 42	103 Rh rhodium 43	106 Pd palladium 45
133 Cs caesium 55	137 Ba barium 56	139 La* lanthanum 57	178 Hf hafnium 72	181 Ta tantalum 73	184 W tungsten 74	190 Os osmium 75	192 Ir iridium 77
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[261] Rf rutherfordium 104	[262] Db dubnium 105	[266] Sg seaborgium 106	[264] Bh bohrium 107	[268] Mt meitnerium 109
[227] Rg roentgenium 111	[271] Ds darmstadtium 110	[271] Rg roentgenium 111	Elements with atomic numbers 112-116 have been reported but not fully authenticated				

Key

relative atomic mass
atomic symbol
name
atomic (proton) number