

Candidate Forename						Candidate Surname				
Centre Number						Candidate Number				

**OXFORD CAMBRIDGE AND RSA EXAMINATIONS
GENERAL CERTIFICATE OF SECONDARY EDUCATION**

A217/02

**TWENTY FIRST CENTURY SCIENCE
ADDITIONAL SCIENCE A**

**Unit 3: Modules B6 C6 P6
(Higher Tier)**

**FRIDAY 19 JUNE 2009: Morning
DURATION: 40 minutes**

SUITABLE FOR VISUALLY IMPAIRED CANDIDATES

**Candidates answer on the question paper
A calculator may be used for this paper**

OCR SUPPLIED MATERIALS:

None

OTHER MATERIALS REQUIRED:

Pencil

Ruler (cm/mm)

READ INSTRUCTIONS OVERLEAF

INSTRUCTIONS TO CANDIDATES

- **Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes on the first page.**
- **Use black ink. Pencil may be used for graphs and diagrams only.**
- **Read each question carefully and make sure that you know what you have to do before starting your answer.**
- **Answer ALL the questions.**
- **Write your answer to each question in the space provided, however additional paper may be used if necessary.**

INFORMATION FOR CANDIDATES

- **The number of marks is given in brackets [] at the end of each question or part question.**
- **The total number of marks for this paper is 42.**
- **A list of physics equations is printed on pages 4 and 5.**
- **The Periodic Table is printed on page 35.**

BLANK PAGE

TWENTY FIRST CENTURY SCIENCE EQUATIONS

USEFUL RELATIONSHIPS

EXPLAINING MOTION

speed = $\frac{\text{distance travelled}}{\text{time taken}}$

momentum = **mass** \times **velocity**

change of momentum = **resultant force** \times **time for which it acts**

work done by a force = **force** \times **distance moved by the force**

change in energy = **work done**

change in GPE = **weight** \times **vertical height difference**

kinetic energy = $\frac{1}{2} \times \text{mass} \times [\text{velocity}]^2$

ELECTRIC CIRCUITS

$$\text{resistance} = \frac{\text{voltage}}{\text{current}}$$

$$\frac{V_p}{V_s} = \frac{N_p}{N_s}$$

$$\text{energy transferred} = \text{power} \times \text{time}$$

$$\text{power} = \text{potential difference} \times \text{current}$$

$$\text{efficiency} = \frac{\text{energy usefully transferred}}{\text{total energy supplied}} \times 100\%$$

THE WAVE MODEL OF RADIATION

$$\text{wave speed} = \text{frequency} \times \text{wavelength}$$

Answer ALL the questions.

1 (a) Micky plays dominoes in a lesson about waves.

Each domino has a WORD at the top and a MEANING at the bottom.

Each word must be placed below its correct meaning, as shown below.

A	<u>LONGITUDINAL</u>
	number of waves per second from the source
B	<u>FREQUENCY</u>
	distance from one crest to the next

Here are the other three dominoes.

C

AMPLITUDE

how far a wave goes
in a second

D

WAVELENGTH

height of a crest

E

SPEED

energy flow parallel
to wave disturbance

Write C, D or E in each blank domino on the page opposite, so that each word is below its correct meaning.

You may fill in the blank dominoes if it helps you work out the answers. [2]

(b) Which one of these actions could change the speed of a wave?

Put a tick (✓) in the box next to the correct answer.

change the intensity of the wave

change the amplitude of the wave

change the frequency of the wave source

change the medium that the wave passes through

[1]

(c) Alice talks to Micky about their work.

What do the sound waves transfer from Alice to Micky?

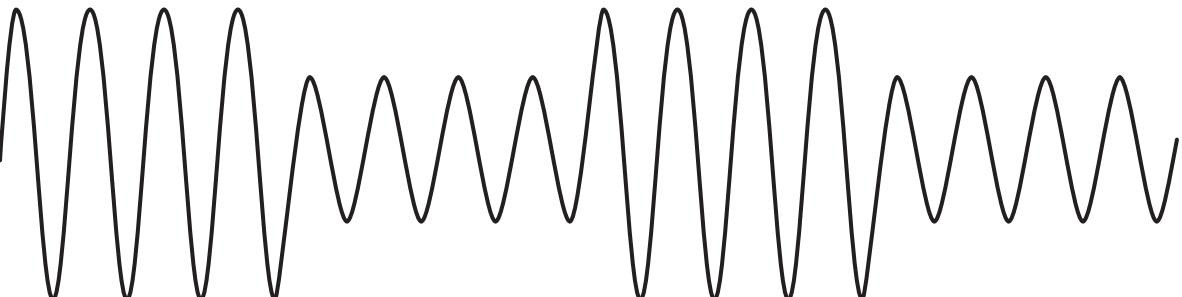
Put a ring around the correct answer.

ATOMS

ENERGY

RAYs

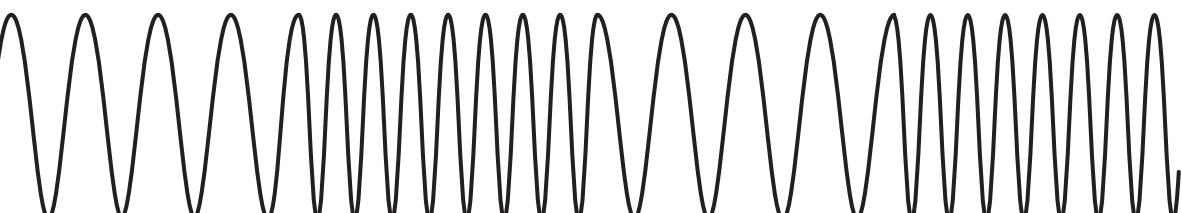
WAVELENGTHS


[1]

[Total: 4]


2 Jake is a security guard. He uses radio waves to communicate with his boss.

(a) Here are three wave patterns for the radio waves leaving Jake's radio.


A

B

C

Draw straight lines to match each **WAVE PATTERN** with its best **DESCRIPTION**.

**WAVE
PATTERN**

A

B

C

DESCRIPTION

**amplitude modulation
by a digital signal**

**frequency modulation
by a digital signal**

**amplitude modulation
by an analogue signal**

**frequency modulation
by an analogue signal**

[2]

(b) Jake's radio transmits his voice signal in a digital format.

The sentences explain how the voice signal is sent from Jake to his boss.

They are in the wrong order.

- A The radio wave leaves the transmitter.**
- B The radio wave is absorbed by the receiver.**
- C The pattern of digital information is recovered.**
- D The information and noise signals are amplified.**
- E The voice signal is modulated onto the radio wave.**
- F The voice signal is recreated from the digital pattern.**
- G The intensity of the wave decreases and it picks up noise as it travels.**

Fill in the boxes to show the correct order.

The first and last have been done for you.

E							F
---	--	--	--	--	--	--	---

[2]

(c) What is the ADVANTAGE of sending Jake's voice signal in a digital format?

Put a tick (✓) in the box next to the BEST answer.

It is easier to switch a wave on and off than to alter its amplitude.

The information is sent as a pattern of two values called 1 and 0.

Digital circuits are much more complicated than analogue ones.

The digital pattern is recognisable even when noise has been added to the wave.

[1]

[Total: 5]

3 Ben hurts his foot playing football. The hospital takes an X-ray image of his foot to see if any bones are broken.

(a) Ben asks his friends why X-rays can be used to make an image of his bones.

ALAN

Bone transmits more X-rays than muscle.

BESS

Bone absorbs more X-rays than muscle.

CARLO

Bone reflects X-rays but muscle transmits them.

DAVINA

X-rays are absorbed by water in the muscles.

Who has the correct idea?

answer _____ [1]

(b) Ben knows that exposure to X-rays can be dangerous.

This is because X-ray photons carry a lot of energy and can damage cells.

Why do X-ray photons carry a lot of energy?

Put a tick (✓) in the box next to the correct reason.

X-rays have a very high speed.

X-rays have a very big amplitude.

X-rays have a very high frequency.

X-rays have a very big wavelength.

[1]

(c) The hospital is concerned for Ben's safety.

The hospital measures the intensity of the X-rays before making an image of his bones.

Complete this equation for intensity. Choose words from this list.

ENERGY PER PHOTON

ENERGY PER SECOND

FREQUENCY PER WAVELENGTH

PHOTONS PER METRE

PHOTONS PER SECOND

$$\boxed{\text{intensity of X-ray beam}} = \boxed{\quad} = \boxed{\quad} \times \boxed{\quad}$$

[2]

(d) X-rays are part of the electromagnetic spectrum.

So are ultraviolet waves.

Draw straight lines to link the START of each sentence with its correct END.

START

END

... speed.

X-rays and ultraviolet waves in empty space always have the same ...

... amplitude.

X-rays and ultraviolet waves always have different values for their ...

... wavelength.

[1]

[Total: 5]

4 **Sam is ironing and accidentally touches the hot plate of the iron.**

He pulls his hand away very quickly.

(a) Which sentences describe his reaction?

Put a tick (✓) in the box next to each of the correct phrases.

His response is ...

... learned.

... deliberate.

... involuntary.

... a simple reflex.

... a conditioned reflex.

[1]

(b) Which parts of the nervous system are involved in Sam's reaction?

Put a **ring** around EACH correct part.

BRAIN

CONSCIOUSNESS

INTELLIGENCE

MEMORY

MOTOR NEURON

SENSORY NEURON

SPINAL CORD

SYNAPSE

[2]

(c) Later, Sam prepares a meal. He picks up a hot dish but does NOT drop it.

Why is his response different?

Put a tick (✓) in the box next to the BEST answer.

The receptors in his hand have become less sensitive.

His brain has modified his reflex response.

The smell of the food is a secondary stimulus.

His brain does not have conscious control of his response.

[1]

[Total: 4]

5 Animals such as woodlice respond to changes in their environment.

This process follows a series of steps.

(a) Complete the sentences to explain these steps.

Choose words from the list.

AN ACTION

AN EFFECTOR

A HORMONE

A MOTOR NEURON

A RECEPTOR

A SENSORY NEURON

A STIMULUS

A SYNAPSE

The change in the environment is _____.

The change is detected by _____.

Information is carried to the central nervous

system by _____.

Information is carried from the central nervous

system by _____.

The response is carried out by _____.

[4]

(b) Receptors and effectors can be found in complex organs.

Draw lines to join each TYPE OF CELL to the ORGAN where it is found.

Draw lines to show whether each TYPE OF CELL is an EFFECTOR OR RECEPTOR.

<u>ORGAN</u>	<u>TYPE OF CELL</u>	<u>EFFECTOR OR RECEPTOR</u>
gland	light sensitive cell	receptor
muscle	hormone secreting cell	effector
eye	muscle cell	

[2]

[Total: 6]

BLANK PAGE

6 Scientists have studied the brain and its functions by a variety of methods.

(a) Which of these methods, A, B, C or D, requires physical contact with the brain?

- A MRI scans of the brain
- B X-ray photographs of the brain
- C electrical stimulation of the brain
- D interviews of patients with brain damage

method _____

[1]

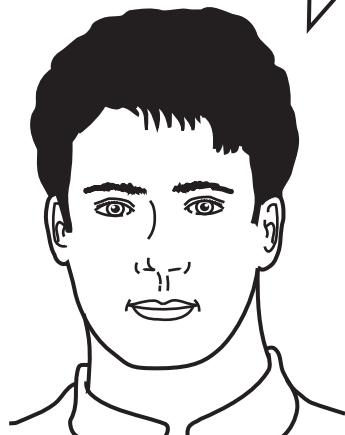
(b) Four friends are revising for their exams.

They talk about the methods they use.

MARK

I draw a plan so
I can see how the
ideas fit together.

SARAH


I write out my notes
several times, then try to
write them without looking
at the information.

PETER

I listen to music while
I revise, then I think
about the music during
the exam.

JANE

I drink lots of water
as I discuss the ideas
with my friends.

(i) Who is remembering by repetition?

answer _____ [1]

(ii) Who is using a stimulus to help them remember?

answer _____ [1]

(c) What is memory?

Put a tick (✓) in the box next to each of the TWO phrases that BEST describe memory.

giving information

storing information

inputting information

retrieving information

processing information

[1]

[Total: 4]

7 Benzoic acid is added to foods as a preservative.

Benzoic acid forms solid crystals which must be purified before the acid is used.

(a) The table shows different methods of purifying chemicals, and information about when you would use each method.

Draw lines to link each METHOD to the correct piece of INFORMATION.

One has been done for you.

<u>METHOD</u>	<u>INFORMATION</u>
crystallisation	The solid substance is coated with a solution containing impurities.
evaporation	The impurities are more soluble than the substance.
filtration	The substance is in a very dilute solution.
washing	The impurities do not dissolve.

[2]

(b) Terry does a titration to check the purity of some benzoic acid.

He wants to use an indicator which changes colour when the solution becomes slightly alkaline.

	<u>INDICATOR</u>	<u>pH RANGE FOR COLOUR CHANGE</u>
<u>A</u>	gentian violet	0 to 2
<u>B</u>	methyl red	4 to 6
<u>C</u>	litmus	5 to 8
<u>D</u>	phenolphthalein	8 to 10
<u>E</u>	nitramine	11 to 13

(i) Which indicator, A, B, C, D, or E, should he use?

answer _____ [1]

(ii) Terry does the titration five times.

He writes down his titration results.

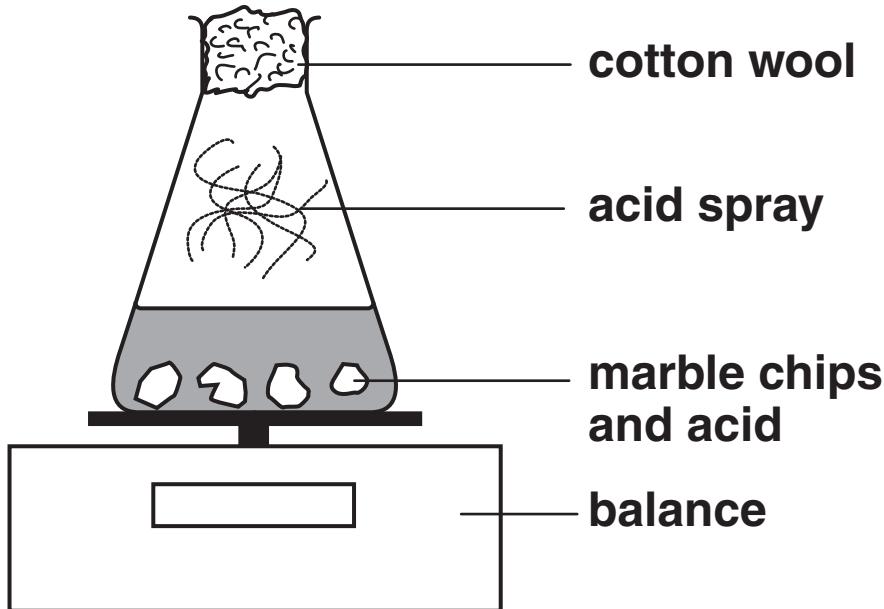
titration number	1	2	3	4	5
volume of alkali in cm ³	25.9	25.1	25.0	25.0	25.0

Put a tick (✓) in the box next to the result that he should use for his calculations.

25.0

25.1

25.2


25.9

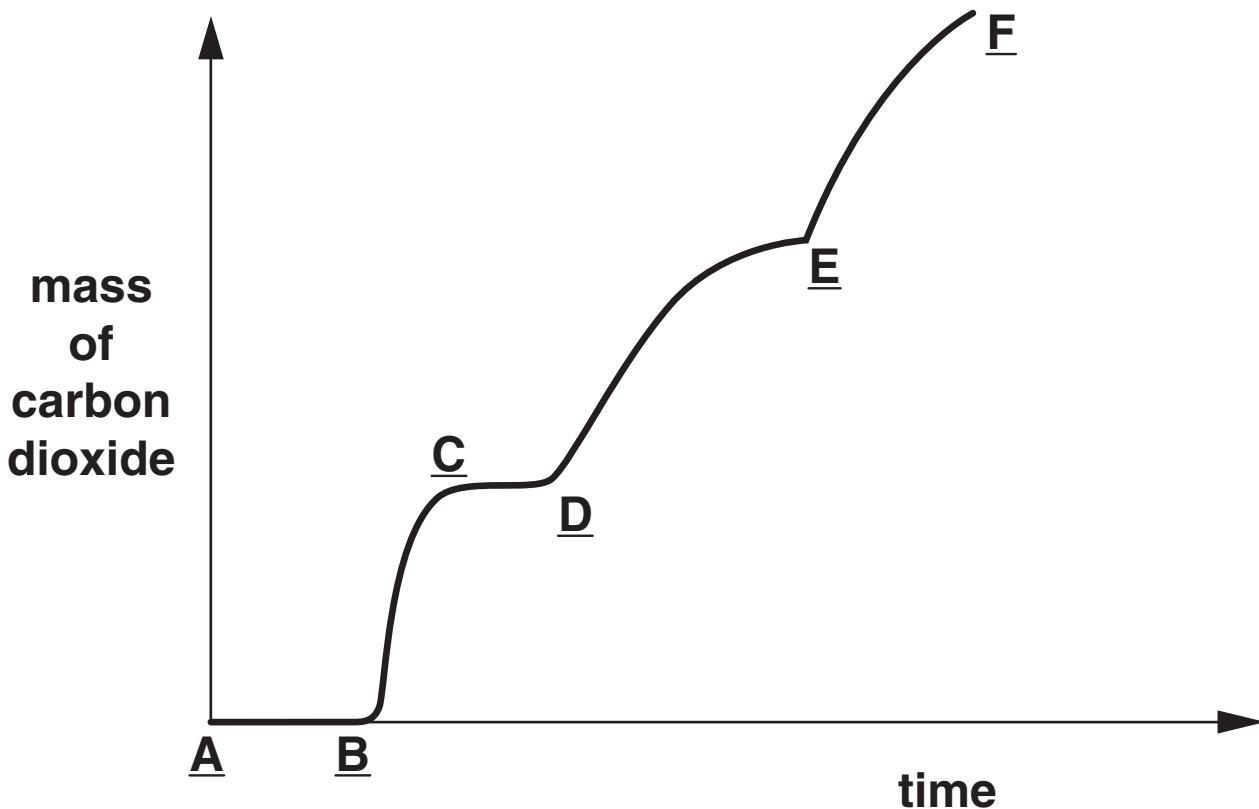
[1]

[Total: 4]

8 **Bobby reacts marble chips (calcium carbonate) with acid. He uses an excess of marble chips.**

He measures the change in mass as the acid reacts.

(a) Bobby uses sulfuric acid, but he finds the reaction stops almost immediately.


This is because the calcium carbonate becomes covered with a layer of an insoluble salt.

What is the name of the salt?

[1]

(b) Bobby repeats the experiment using hydrochloric acid instead of sulfuric acid.

He starts the reaction by adding some acid. Bobby twice adds more acid part way through. One of these times he lets the reaction stop before he adds the extra acid.

(i) On the list below, put a **ring** around the letters which show places where acid was added.

One has been ringed for you.

A

B

C

D

E

F

[1]

(ii) Put a tick (\checkmark) in the box next to the region of the graph where the reaction stops.

B to C

C to D

D to E

E to F

[1]

(c) Susan tells Bobby that he can calculate the mass of carbon dioxide produced using relative formula masses and the equation for the reaction.

Relative atomic masses

H=1, C=12, O=16, Cl=35.5, Ca=40

(i) Put a **ring** around the relative formula mass of CO_2 .

12 16 32 40 44 56 [1]

(ii) Calculate the relative formula mass of CaCO_3 .

answer _____ [1]

(iii) Calcium carbonate reacts with hydrochloric acid to form calcium chloride, carbon dioxide and water.

Complete and balance the equation for the reaction.

[2]

(d) Bobby does two more experiments.

First, he reacts marble chips with dilute hydrochloric acid. The reaction takes 15 minutes to complete.

Then he repeats this experiment exactly as before, but with concentrated hydrochloric acid. The reaction takes 10 minutes to complete.

Here are some statements about the reaction with concentrated hydrochloric acid.

- A** The acid particles move faster.
- B** Particles collide more frequently.
- C** More gas is produced at each collision.
- D** Particles collide with the same average energy.
- E** The calcium carbonate has more surface area.
- F** Acid particles are closer together in the solution.
- G** Particles are closer together in the acid and in the calcium carbonate.

(i) Put a tick (✓) in the box next to each correct statement. [2]

(ii) Which **TWO** statements make an explanation of why the reaction goes quicker?

statements _____ and _____ [1]

[Total: 10]

END OF QUESTION PAPER

BLANK PAGE

The Periodic Table of the Elements

1	2												
7	9	Be beryllium 4											
23	24	Mg magnesium 12											
39	40	Ca calcium 20	45	Sc scandium 21	48	Ti titanium 22	51	Cr chromium 24	52	Mn manganese 25	56	Fe iron 26	
85	88	Rb rubidium 37	89	Sr strontium 38	91	Y yttrium 39	93	Nb niobium 41	96	Mo molybdenum 42	[98] Tc technetium 43	101	Ru ruthenium 44
133	137	Cs caesium 55	139	La* lanthanum 57	178	Hf hafnium 72	181	Ta tantalum 73	184	W tungsten 74	186	Re rhenium 75	
[223]	[226]	Fr francium 87	[227]	Ac* actinium 89	[261]	Rf rutherfordium 104	[262]	Db dubnium 105	[266]	Sg seaborgium 106	[264]	Bh bohrium 107	
11	12	B boron 5		C carbon 6		N nitrogen 7		O oxygen 8		F fluorine 9			
27	28	Al aluminium 13		Si silicon 14		P phosphorus 15		S sulfur 16		Cl chlorine 17			
111	122	Ga gallium 31		Ge germanium 32		As arsenic 33		Se selenium 34		Br bromine 35			
115	119	In indium 49		Sn tin 50		Sb antimony 51		Te tellurium 52		I iodine 53			
112	128	Pd palladium 46		Pt platinum 78		Pb lead 82		Bi bismuth 83		Po polonium 84			
103	106	Ag silver 47		Ir iridium 77		Hg mercury 80		Tl thallium 81		At astatine 85			
108	112	Cd cadmium 48		Pt platinum 78		Ag gold 79		Bi mercury 80		Po polonium 84			
101	103	Rh rhodium 45		Ir iridium 77		Ag mercury 80		Tl thallium 81		At astatine 85			
190	192	Os osmium 76		Pt platinum 78		Hg mercury 80		Bi mercury 80		Po polonium 84			
197	201	Au gold 79		Tl thallium 81		Ag mercury 80		Bi mercury 80		Po polonium 84			
268	271	Mt meitnerium 109		Ds darmstadtium 110		Rg roentgenium 111		Rg roentgenium 111		Po polonium 84			

Elements with atomic numbers 112-116 have been reported but not fully authenticated

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1PB.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.