

Candidate Forename						Candidate Surname				
Centre Number						Candidate Number				

**OXFORD CAMBRIDGE AND RSA EXAMINATIONS
GENERAL CERTIFICATE OF SECONDARY EDUCATION**

B624/02

**GATEWAY SCIENCE
ADDITIONAL SCIENCE B**

**Unit 2 Modules B4 C4 P4
(Higher Tier)**

**MONDAY 25 JANUARY 2010: Afternoon
DURATION: 1 hour**

SUITABLE FOR VISUALLY IMPAIRED CANDIDATES

**Candidates answer on the Question Paper
A calculator may be used for this paper**

OCR SUPPLIED MATERIALS:

None

OTHER MATERIALS REQUIRED:

**Pencil
Ruler (cm/mm)**

READ INSTRUCTIONS OVERLEAF

INSTRUCTIONS TO CANDIDATES

- **Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes on the first page.**
- **Use black ink. Pencil may be used for graphs and diagrams only.**
- **Read each question carefully and make sure that you know what you have to do before starting your answer.**
- **Answer ALL the questions.**
- **Write your answer to each question in the space provided, however additional paper may be used if necessary.**

INFORMATION FOR CANDIDATES

- **The number of marks is given in brackets [] at the end of each question or part question.**
- **A list of physics equations is printed on page three.**
- **The Periodic Table is printed on the back page.**
- **The total number of marks for this paper is 60.**

EQUATIONS

$$\text{speed} = \frac{\text{distance}}{\text{time taken}}$$

$$\text{acceleration} = \frac{\text{change in speed}}{\text{time taken}}$$

$$\text{force} = \text{mass} \times \text{acceleration}$$

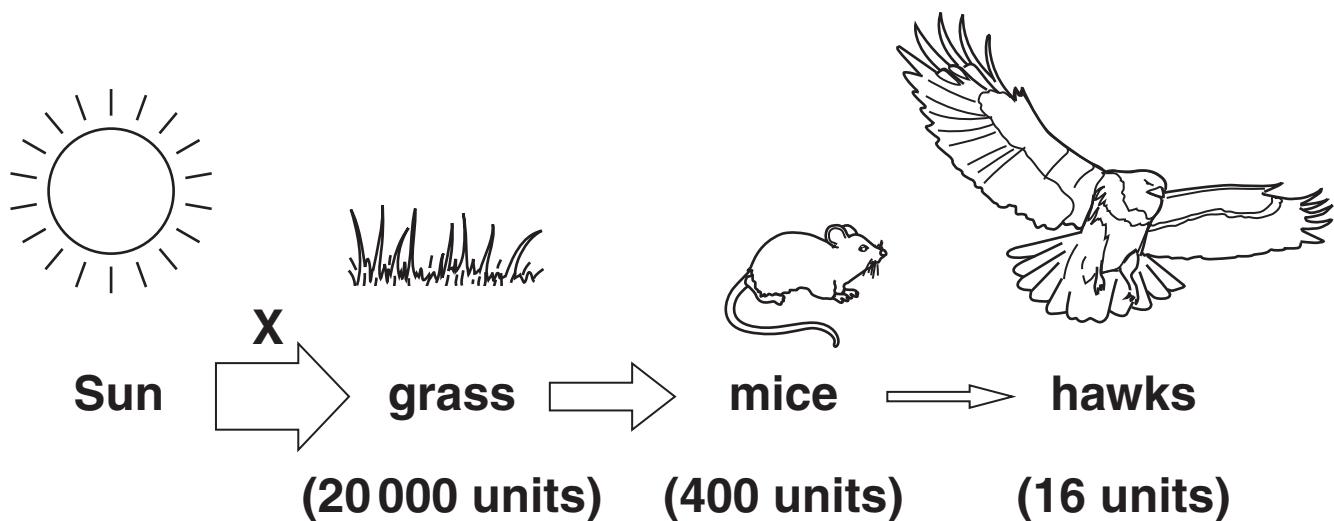
$$\text{work done} = \text{force} \times \text{distance}$$

$$\text{power} = \frac{\text{work done}}{\text{time}}$$

$$\text{kinetic energy} = \frac{1}{2} \text{mv}^2$$

$$\text{potential energy} = \text{mgh}$$

$$\text{weight} = \text{mass} \times \text{gravitational field strength}$$


$$\text{resistance} = \frac{\text{voltage}}{\text{current}}$$

Answer ALL the questions.

SECTION A – MODULE B4

1 Look at the food chain.

The numbers show the amount of energy used for growth at each stage of the food chain.

(a) Process X transfers energy from the Sun to the grass.

What is process X?

[1]

(b) 2% of the energy in the grass is transferred to the mice.

This is a lower figure than the percentage of energy transferred from the mice to the hawks.

(i) What percentage of the energy in the mice is transferred to the hawks?

answer _____ % [2]

(ii) NOT all the energy at one stage of a food chain is transferred to the next.

Write down ONE reason why.

_____ [1]

(iii) The percentage of the energy transferred from the mice to the hawks is MORE than that transferred from the grass to the mice.

Suggest why.

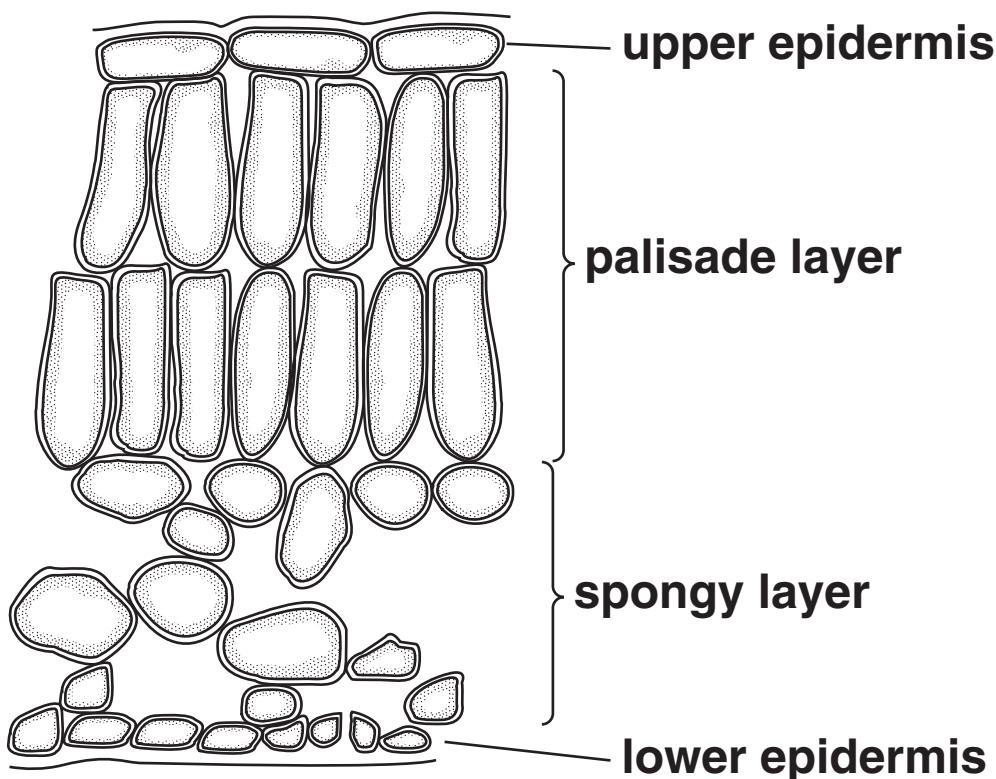
_____ [1]

(c) Look at the food chain.

A disease reduces the number of hawks.

What is likely to happen to the amount of grass?

Explain your answer.



[1]

[Total: 6]

BLANK PAGE

2 The diagram shows a section through a leaf.

(a) The spongy layer contains air spaces.

Why are the air spaces important?

[1]

(b) (i) Which of the four layers labelled in the diagram contains most chloroplasts?

[1]

(ii) Chloroplasts contain chlorophyll.

What element found in minerals is present in chlorophyll?

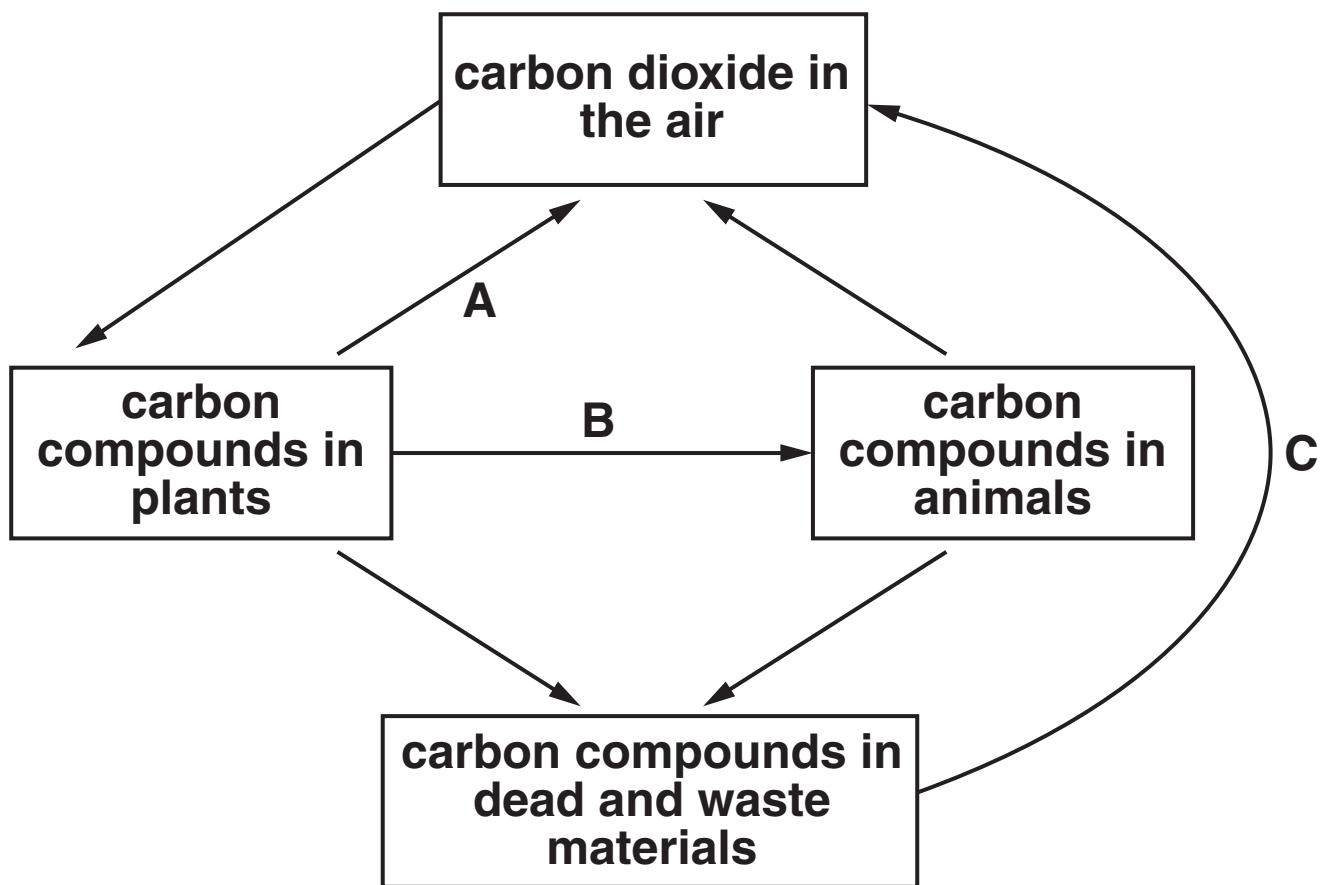
Put a ring around the correct answer.

CALCIUM

MAGNESIUM

PHOSPHORUS

POTASSIUM


[1]

(iii) By what process do plants absorb minerals?

_____ [1]

[Total: 4]

3 The diagram shows part of the carbon cycle.

(a) What process is shown by arrow A?

[1]

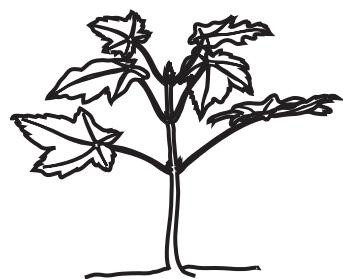
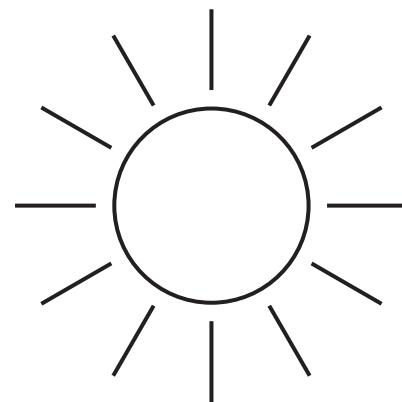
(b) What process is shown by arrow B?

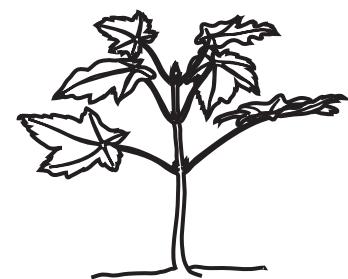
[1]

(c) What type of organisms are responsible for the process shown by arrow C?

[1]

(d) There are other ways carbon dioxide is added to the air that are NOT shown on the diagram.



Write down ONE OTHER way.


[1]

[Total: 4]

4 The diagram shows a plant on two different days.

rainy day

sunny day

(a) Plants lose water from their leaves.

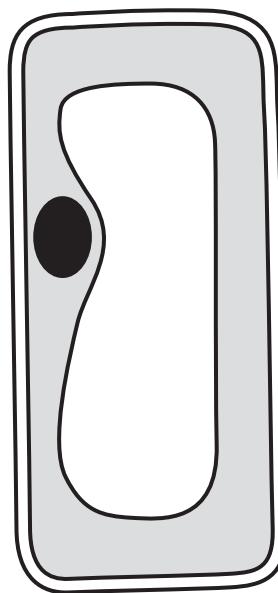
What is this process called?

[1]

(b) On the sunny day it is warmer, there is more light and it is less humid.

The plant loses water more quickly.

Explain why.



[3]

(c) The diagram shows a cell from the plant on the rainy day.

The cell is turgid.

On the sunny day the cell becomes plasmolysed.

Draw a diagram to show a plasmolysed cell.

Label your diagram to show the changes.

If you are unable to draw the diagram describe clearly the changes that will occur inside the cell as it becomes plasmolysed.

[2]

[Total: 6]

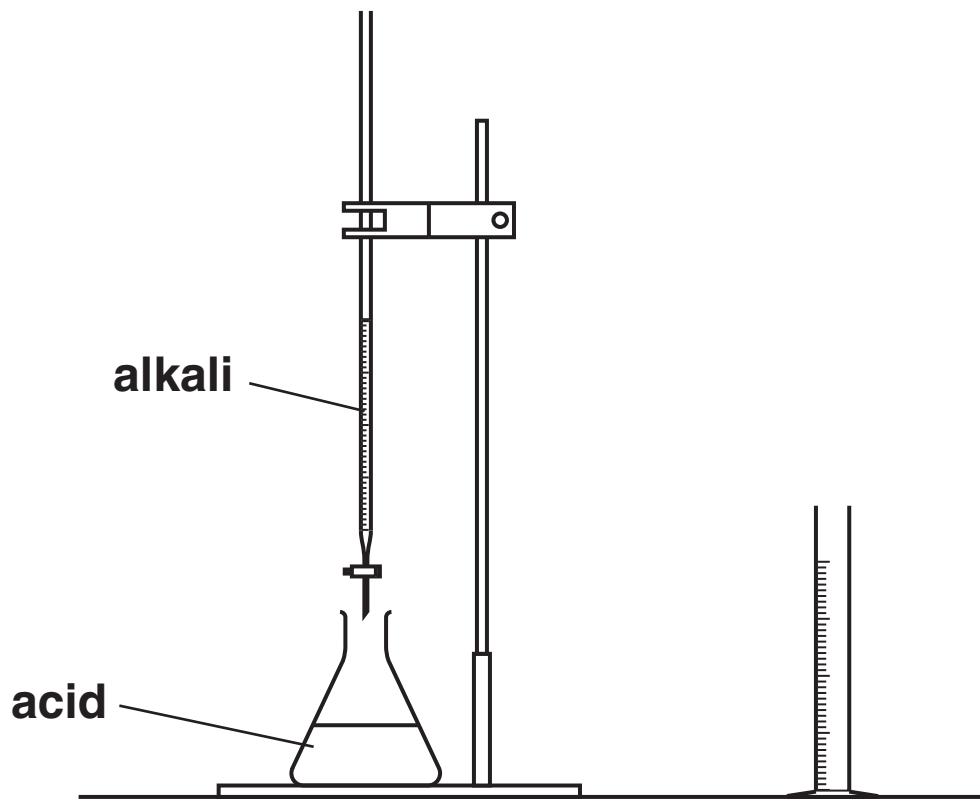
SECTION B – MODULE C4

5 This question is about fertilisers.

Fertilisers can be made by NEUTRALISATION.

(a) Complete the word equation to show what happens during neutralisation.

acid + base → _____ + _____
[2]


(b) Potassium hydroxide reacts with nitric acid.

What is the name of the fertiliser made?

_____ [1]

(c) Acids react with alkalis when fertilisers are made.

Look at the diagram. It shows the equipment used.

Alkali from the burette is added to the acid in the flask.

Jo wants to make ammonium sulfate.

(i) Which acid and which alkali should she use?

acid used _____

alkali used _____ [2]

(ii) Explain how Jo gets a NEUTRAL solution.

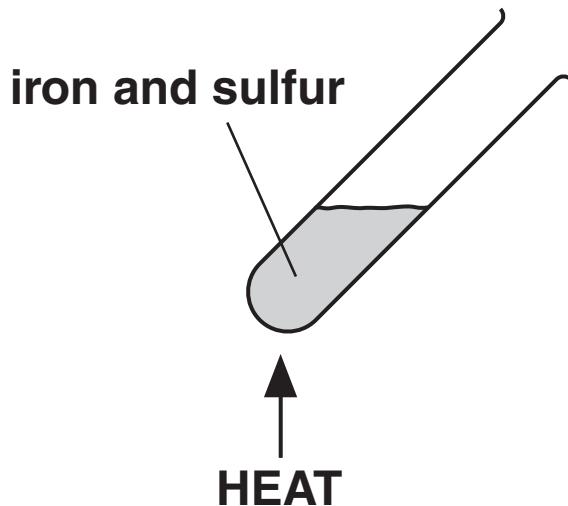
[2]

(iii) How does Jo get SOLID ammonium sulfate from the neutral solution?

[1]

(d) Acids contain hydrogen ions, H^+ . Alkalies contain hydroxide ions, OH^- .

Write an IONIC equation for neutralisation.



[Total: 9]

6 This question is about chemical calculations.

Jake and Monty make iron sulfide.

They heat a mixture of iron and sulfur.

(a) They make a sample of iron sulfide.

They predict that they will make 9.0 g.

They actually make 7.2 g.

Calculate their percentage yield.

answer _____ %

[2]

(b) Look at the equation for the reaction.

iron + sulfur \rightarrow iron sulfide

Jake and Monty use 5.6 g of iron.

How much iron sulfide can they make?

The relative atomic mass of iron is 56 and of sulfur is 32.

answer _____ g

How much sulfur must Jake and Monty use?

answer _____ g [2]

[Total: 4]

7 This question is about the manufacture of medicines.

Finchfield Pharmaceuticals make medicines.

Making and developing new medicines is very expensive.

One of the reasons for this is that less automation is possible.

- Write about OTHER reasons why making and developing new medicines is very expensive.
- Explain your answers.

[4]

[Total: 4]

8 Ammonia is made in the Haber process.

Look at the equation.

(a) (i) One condition used in the Haber process is an iron catalyst.

Write down one OTHER condition used.

[1]

(ii) Why is a catalyst used?

[1]

(b) Ammonia can be used to make urea, $\text{CO}(\text{NH}_2)_2$.

How many atoms are there in one molecule of urea, $\text{CO}(\text{NH}_2)_2$?

[1]

[Total: 3]

SECTION C – MODULE P4

9 Radioactive atoms can emit THREE different types of nuclear radiation.

One type is ALPHA (α) radiation.

(a) Write down the names of the OTHER two types of nuclear radiation.

2 _____ [2]

(b) Americium-241 does not occur naturally.

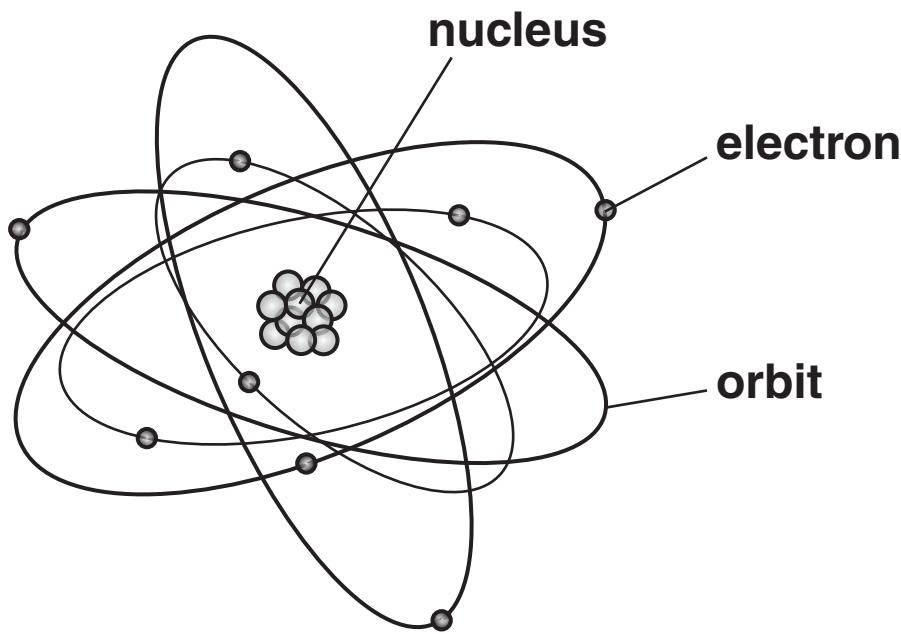
It is a source of alpha radiation. It is used in smoke alarms.

(i) Describe how a smoke detector containing americium-241 works.

Use ideas about IONISATION to answer the question.

(ii) Americium-241 is made when plutonium-241 decays.

Plutonium-241 is made in a nuclear reactor from plutonium-240.


How does plutonium-240 change into plutonium-241 in a nuclear reactor?

[1]

[Total: 5]

10 (a) The diagram represents a radioactive atom.

Finish the sentences by choosing the BEST words from this list.

ATOM

ELECTRON

NUCLEUS

ORBIT

STABLE

UNSTABLE

Radiation comes from the nucleus of the atom.

The radioactive atom is _____.

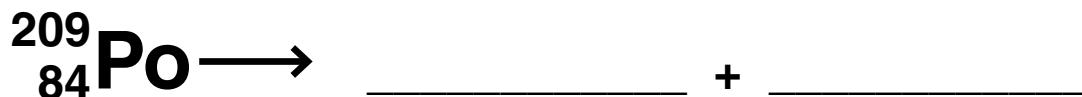
The atom may emit an alpha particle.

The alpha particle is the same as a helium
_____.

[2]

(b) This table shows the atomic numbers of some elements.

ELEMENT	SYMBOL	ATOMIC NUMBER
thallium	Tl	81
lead	Pb	82
bismuth	Bi	83
polonium	Po	84
astatine	At	85
radon	Rn	86


(i) Polonium-209 decays by emitting an alpha particle.

Which element is formed when polonium-209 decays?

Use the table to help you.

[1]

(ii) Finish and balance the equation to show what happens when polonium-209 decays.

[2]

[Total: 5]

11 This question is about static electricity.

(a) Mel hangs up a charged plastic rod on a cotton thread.

She brings another charged rod towards it.

The rods move apart.

Why do the two rods move apart?

[1]

(b) Electronic components can be damaged by static electricity.

A technician builds a computer.

She is attached to the computer by an ANTISTATIC STRAP.

Write down two OTHER examples where static electricity can be dangerous.

[2]

(c) Technicians can sometimes get electrostatic shocks when using machines.

How do they avoid this?

[1]

[Total: 4]

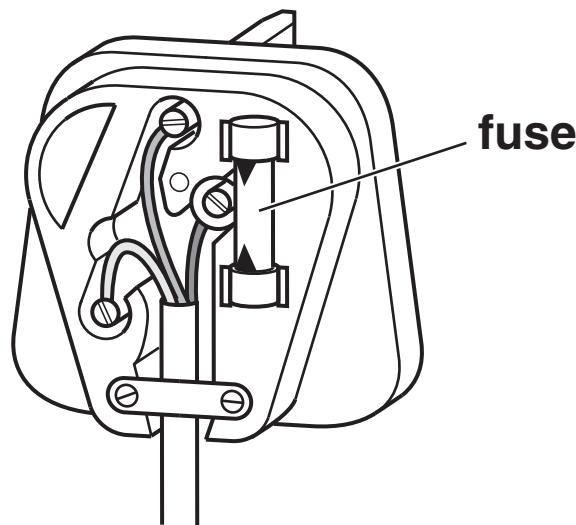
12 The table shows the hearing ranges of some animals.

ANIMAL	FREQUENCY RANGE IN Hz
bullfrog	100 – 3000
canary	250 – 8000
chicken	125 – 2000
dog	67 – 45 000
elephant	16 – 12 000
goldfish	20 – 3000
horse	55 – 33 500
human	20 – 20 000
owl	200 – 12 000

(a) Which TWO animals can hear ultrasound?

_____ and _____ [1]

(b) Ultrasound is used to scan pregnant women to check on the growth of the unborn baby.


Write down TWO reasons why ultrasound is used instead of X-rays.

1 _____

2 _____
_____ [2]

[Total: 3]

13 A mains plug contains a fuse.

(a) This plug is connected to a table lamp.

The **FUSE** is there for protection. It melts if the current is too large.

Explain IN DETAIL how this provides protection.

[1]

(b) The total resistance of the circuit containing the lamp is 460Ω .

A fuse is used in the 230V mains plug.

Calculate the current that passes through the fuse.

The equations on page 3 may help you.

answer _____ amps [2]

[Total: 3]

END OF QUESTION PAPER

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

1	2	3	4	5	6	7	0
7 Li lithium 3	9 Be beryllium 4	40 Ca calcium 20	45 Sc scandium 21	48 Ti titanium 22	51 V vanadium 23	52 Cr chromium 24	55 Mn manganese 25
23 Na sodium 11	24 Mg magnesium 12	39 K potassium 19	88 Sr strontium 38	89 Y yttrium 39	91 Nb niobium 41	93 Zr zirconium 40	96 Mo molybdenum 42
39 Rb rubidium 37	85 Rb rubidium 37	137 Cs caesium 55	139 La* lanthanum 57	178 Hf hafnium 72	181 Ta tantalum 73	184 W tungsten 74	186 Re rhenium 75
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[261] Rf rutherfordium 104	[262] Db dubnium 105	[266] Sg seaborgium 106	[264] Bh bohrium 107	[268] Mt meitnerium 109
11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9	32 S sulfur 16	35.5 Cl chlorine 17	40 Ar argon 18
27 Al aluminum 13	28 Si silicon 14	31 P phosphorus 15	32 As arsenic 33	70 Ga gallium 31	73 Ge germanium 32	75 Sb antimony 51	79 Se selenium 34
39 Ge germanium 32	40 As arsenic 33	41 In indium 49	42 Cd cadmium 48	43 Rh rhodium 45	44 Pd palladium 46	45 Sn tin 50	46 Te tellurium 52
50 Zn zinc 30	51 Ni nickel 28	52 Co cobalt 27	53 Cu copper 29	54 Ag silver 47	55 Pt platinum 78	56 Hg mercury 80	57 Po polonium 84
58 Ga gallium 31	59 Ge germanium 32	60 In indium 49	61 Cd cadmium 48	62 Sn tin 50	63 Bi bismuth 83	64 Pb lead 82	65 At astatine 85
65 Zn zinc 30	66 Ni nickel 28	67 Co cobalt 27	68 Cu copper 29	69 Ag silver 47	70 Pt platinum 78	71 Hg mercury 80	72 Po polonium 84
73 Ga gallium 31	74 Ge germanium 32	75 In indium 49	76 Cd cadmium 48	77 Sn tin 50	78 Bi bismuth 83	79 Pb lead 82	80 At astatine 85
81 Tl thallium 81	82 Bi bismuth 83	83 Pb lead 82	84 Po polonium 84	85 At astatine 85	86 Rn radon 86		

Key

relative atomic mass
atomic symbol
name
atomic (proton) number

4
He
helium
2

1
H
hydrogen
1

Elements with atomic numbers 112-116 have been reported but not fully authenticated

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.