

Oxford Cambridge and RSA

F

Monday 6 November 2017 – Afternoon

**GCSE GATEWAY SCIENCE
SCIENCE B**

B712/01 Science modules B2, C2, P2 (Foundation Tier)

Candidates answer on the Question Paper.
A calculator may be used for this paper.

OCR supplied materials:

None

Other materials required:

- Pencil
- Ruler (cm/mm)

Duration: 1 hour 30 minutes

Candidate forename						Candidate surname					
--------------------	--	--	--	--	--	-------------------	--	--	--	--	--

Centre number							Candidate number				
---------------	--	--	--	--	--	--	------------------	--	--	--	--

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. If additional space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.
- Do **not** write in the barcodes.

INFORMATION FOR CANDIDATES

- The quality of written communication is assessed in questions marked with a pencil (✍).
- A list of equations can be found on page 2.
- The Periodic Table can be found on the back page.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **85**.
- This document consists of **28** pages. Any blank pages are indicated.

EQUATIONS

energy = mass × specific heat capacity × temperature change

energy = mass × specific latent heat

efficiency = $\frac{\text{useful energy output } (\times 100\%)}{\text{total energy input}}$

wave speed = frequency × wavelength

power = voltage × current

energy supplied = power × time

average speed = $\frac{\text{distance}}{\text{time}}$

distance = average speed × time

$$s = \frac{(u + v)}{2} \times t$$

acceleration = $\frac{\text{change in speed}}{\text{time taken}}$

force = mass × acceleration

weight = mass × gravitational field strength

work done = force × distance

power = $\frac{\text{work done}}{\text{time}}$

power = force × speed

$$KE = \frac{1}{2}mv^2$$

momentum = mass × velocity

force = $\frac{\text{change in momentum}}{\text{time}}$

GPE = mgh

$$mgh = \frac{1}{2}mv^2$$

resistance = $\frac{\text{voltage}}{\text{current}}$

Answer **all** the questions.

SECTION A – Module B2

- 1 Look at the picture of a plant growing in the desert.

- (a) The plant is adapted to live in the desert.

Finish the sentences.

The plant has very long roots that grow deep underground.

This helps the plant compete for and [2]

- (b) The plant has developed long roots by a process called evolution by natural selection.

- (i) What is **evolution** and how does it happen?

..... [2]

- (ii) Write down the name of the scientist who first suggested the theory of natural selection.

..... [1]

- (c) Plants have an important role in the energy flow through a food web.

Describe this role.

.....
.....
..... [2]

- 2 Read the information about two different relationships.

relationship 1
ticks and cows

Ticks are arthropods.
They attach themselves to the skin of cows.
They then feed on the cows' blood.
Some ticks carry a disease called 'African tick-bite fever'.

relationship 2
oxpeckers and cows

Oxpeckers are birds that live in Africa.
They can be found sitting on the backs of cows.
The oxpeckers feed on ticks that they find on the cows' skin.

- (a) Look at the picture of the tick in relationship 1.

Use the picture to explain which class of arthropods **ticks** belong to.

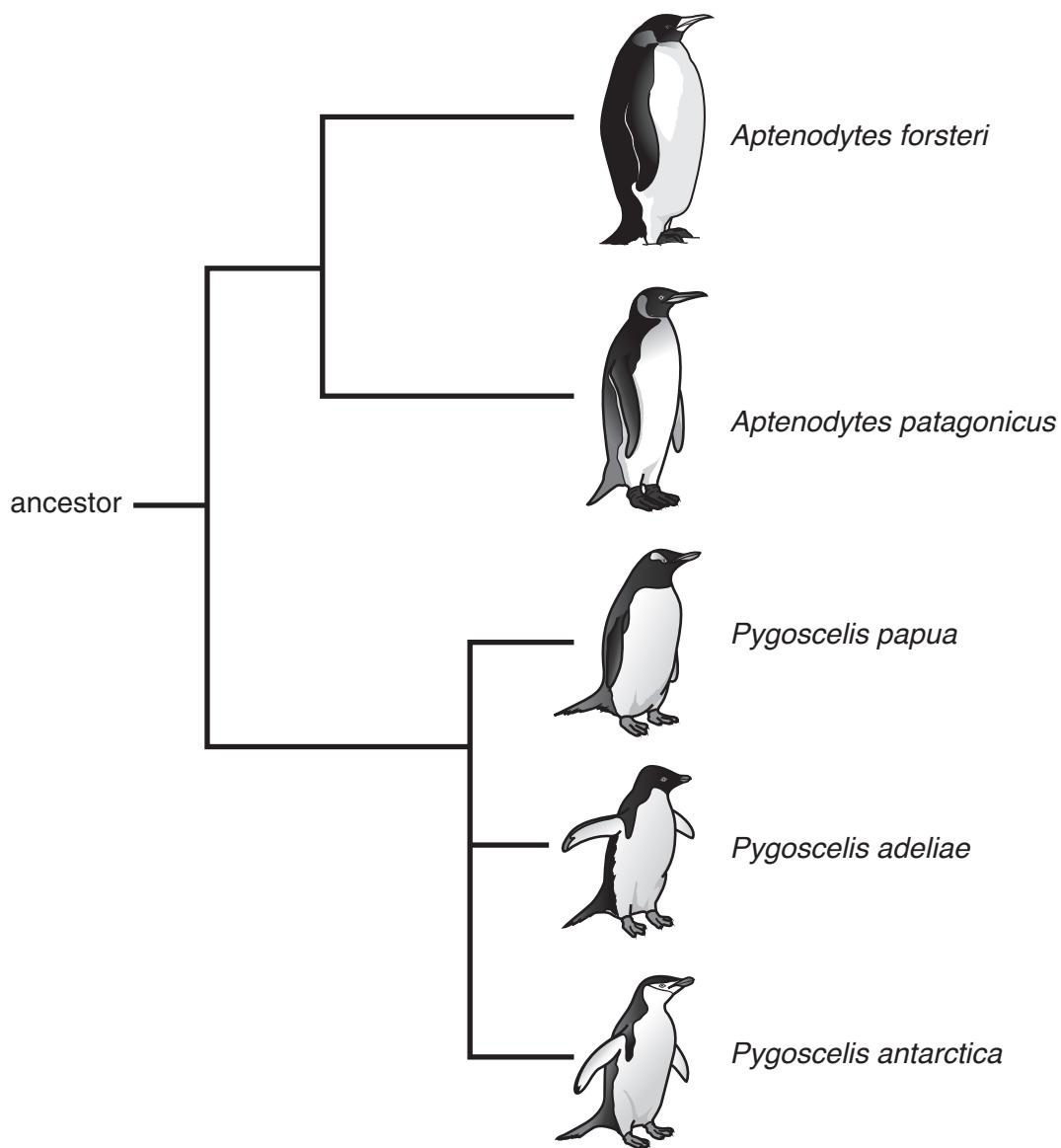
.....
.....
.....

[2]

- (b)** Write about the two different relationships, 1 and 2.

Include ideas about:

- the **type** of relationship in each case
 - why they are classified as this type of relationship
 - how the two relationships are similar and how they are different.



The quality of written communication will be assessed in your answer to this question.

[6]

- [6]

- 3 Look at the diagram. It shows part of the evolutionary tree for penguin species.

- (a) Which penguin shares a **more recent** common ancestor with *Aptenodytes forsteri*?

..... [1]

- (b) All five species of penguins live in or near oceans.

Put a tick (✓) in the correct box to explain why.

they all have small wings

they all feed on fish

they all lay eggs

they are all birds

[1]

- (c) Penguins are kept in zoos for captive breeding programs.

Penguins born in zoos may then be released into the wild.

The released penguins may find it hard to survive in the wild.

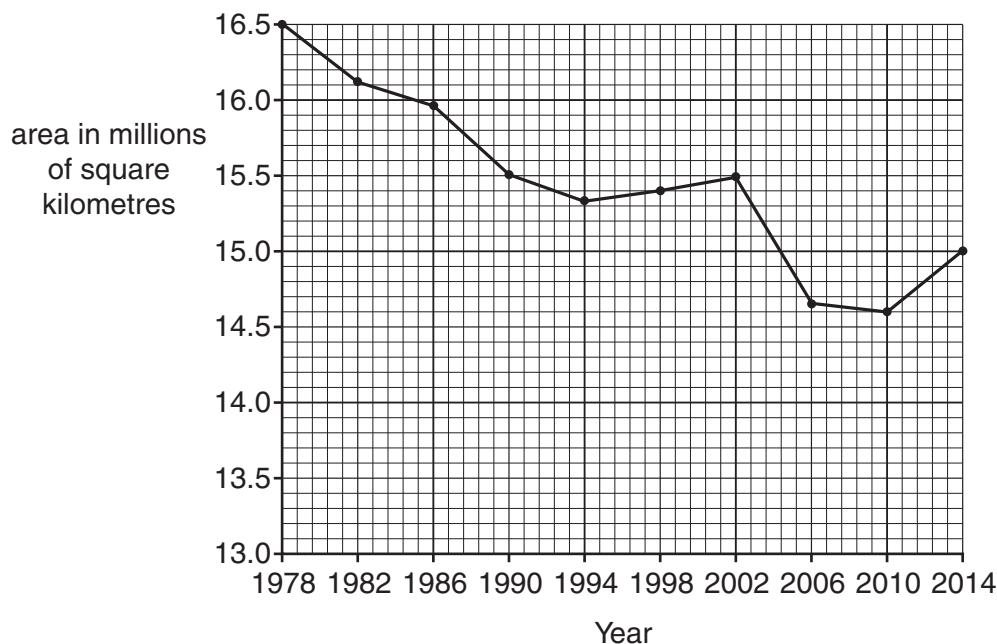
Suggest reasons why captive breeding programs are still important.

.....

.....

.....

[2]


- 4 The Arctic is the northern-most part of the world. It is mainly ocean.

Most of this ocean is frozen and is covered with ice in the winter.

Some of the Arctic ice melts each spring, but most of it stays solid.

Look at the graph.

It shows the area of the Arctic that is covered by ice during March from 1978 to 2014.

- (a) (i) What was the area covered by ice in **1978**?

answer..... million square kilometres

[1]

- (ii) Calculate the difference between the area covered by ice in **1978** and **2014**.

answer..... million square kilometres

[1]

(iii) Polar bears hunt by walking on ice to find food.

Sometimes they need to walk hundreds of kilometres.

Suggest ways the change calculated in part (ii) might affect polar bears.

.....

.....

.....

.....

[2]

(b) Polar bears could become **endangered**.

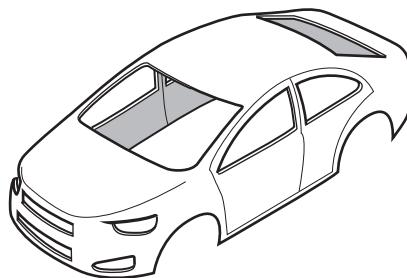
One way to stop polar bears becoming endangered could be to introduce a captive breeding program.

Write about **two other** ways the polar bears can be helped to stop them becoming endangered.

.....

.....

.....


.....

[2]

10

SECTION B – Module C2

- 5 Iron and aluminium can both be used to make car bodies.

Look at the statements about iron and aluminium.

- (a) (i) Put ticks (✓) in the boxes next to the **three** correct statements.

Iron is more dense than aluminium.

Both iron and aluminium are magnetic.

Iron corrodes (rusts) very easily and aluminium does not.

Iron is malleable but aluminium is brittle.

Both iron and aluminium are good conductors of electricity.

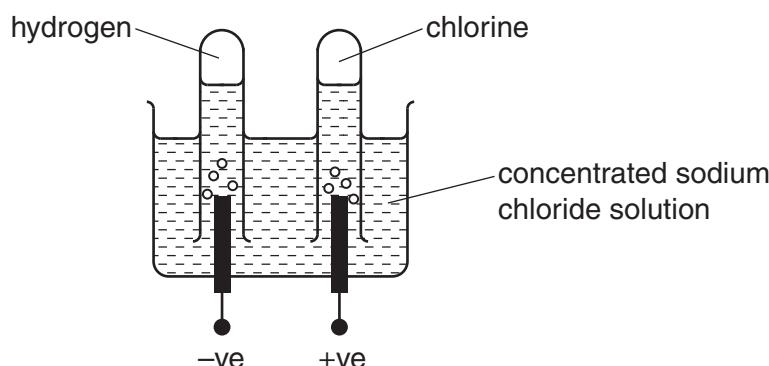
[2]

- (ii) Both iron and aluminium can be recycled.

Write down **two advantages** of recycling iron and aluminium.

.....
.....
.....

[2]


- (b) Solder is an alloy of lead and tin.

Write down **one** use of solder.

.....

[1]

- 6 Look at the diagram. It shows the electrolysis of sodium chloride (salt) solution.

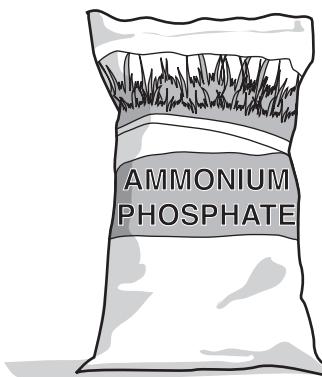
- (a) The electrolysis of sodium chloride is an important **industrial** process.

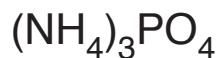
Where does the sodium chloride (salt) needed for the process come from?

..... [1]

- (b) The process involves the reaction of sodium chloride and water.

Sodium hydroxide, NaOH , chlorine, Cl_2 , and hydrogen, H_2 , are made.


Complete the **balanced symbol** equation for this reaction.


- (c) Write down **two** uses of chlorine.

.....
.....
..... [2]

- 7 Ammonium phosphate is used as a fertiliser.

The formula for ammonium phosphate is

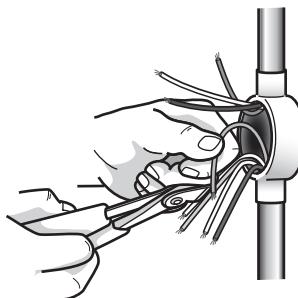
- (a) Which **two** essential elements for plant growth are present in ammonium phosphate?

..... and [2]

- (b) (i) Ammonium nitrate, NH_4NO_3 , is another fertiliser.

Complete the table.

Type of atom	Number of atoms
nitrogen, N
hydrogen, H
oxygen, O
total number of atoms


[2]

- (ii) Nick wants to make ammonium nitrate by **neutralisation**.

Which acid and which alkali should he use?

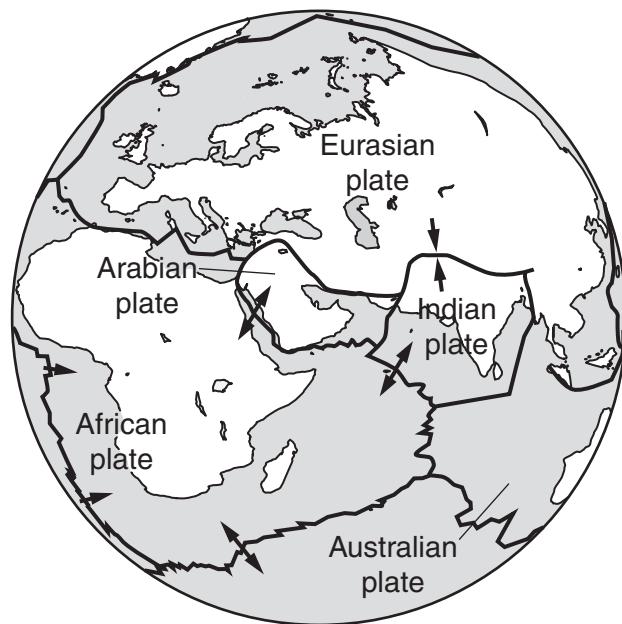
..... [2]

- 8 John wants to replace the electrical wiring in his house.

Look at the table. It shows the properties of three metals **A**, **B** and **C**.

Metal	Density in g/cm ³	Relative flexibility (10 = high 1 = low)	Relative electrical conductivity (100 = high 10 = low)	Cost per tonne in £
A	8.9	10	64	3800
B	8.9	1	16	9120
C	2.7	8	40	1350

John needs to choose one of these metals to use as the metal in the electrical wiring for his house.


Write down the properties of the metal needed for the electrical wiring.

Which metal is the best choice and why?

The quality of written communication will be assessed in your answer to this question.

- 9 Scientists believe that the surface of the Earth is made up of plates.

They believe that the plates move very slowly.

- (a) What is the name of this theory?

..... [1]

- (b) The movement of the plates on the surface of the Earth can cause natural disasters.

Write about **two** of these natural disasters.

.....
.....
..... [2]

15

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

SECTION C – Module P2

- 10 John investigates the energy used each day for four appliances in his home.

He records information for the four appliances.

Look at the table.

Appliance	Power in kilowatts	Time used each day in hours	Energy used each day in kilowatt hours
cooker	3.0	2.5
heater	3.0	2.0	6.0
washing machine	2.0	1.0
TV	0.5	1.0
total			16.0

- (a) (i) Calculate the **energy used** column in the table. One has been done for you. [2]

- (ii) Explain which of the four appliances will have the **lowest** cost each day.

.....

 [2]

- (iii) Electricity costs 15 pence per kilowatt hour.

Calculate the **total** cost in pence of using the four appliances each day.

answer pence

[1]

17

- (b) The electricity is generated in a power station.

The input energy for the power station is 5.0 MJ.

The useful energy output for the power station is 1.5 MJ.

Calculate the percentage efficiency of this power station.

efficiency%

[2]

- 11 (a) A company is planning to launch a manned space mission to Mars in 2026.

An unmanned mission will go to Mars a few years earlier.

Describe two differences in the resources needed for a **manned** mission compared to an **unmanned** mission.

.....
.....
.....
.....

[2]

- (b) There are eight planets in our Solar System.

In order from the Sun they are:

Mercury

.....
Earth

Mars

.....
Saturn

Uranus

Neptune

Write the names of the two missing planets in the list.

[1]

19

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

20

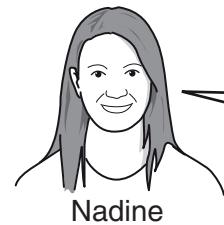
- 12 (a) Global warming is caused by the greenhouse effect.

Greenhouse gases prevent heat from the Earth radiating into space.

Write down the names of three greenhouse gases.

Describe how they are released into the atmosphere.

The quality of written communication will be assessed in your answer to this question.


[6]

. [6]

21

- (b) Not everyone agrees that human activity is causing global warming.

Look at these quotes.

Nadine

It feels like summers are getting warmer so global warming must be happening.

Sue

Dave

Average temperatures on Earth have increased as greenhouse gas emissions have increased.

Malek

The Earth will always regulate itself – we have no impact on it and never will.

Studies have shown that human activity is making more greenhouse gases.

Write down and explain which two quotes are based on **opinions**.

.....

.....

.....

.....

.....

[3]

- 13 Eric completes his homework on radioactivity.

Radioactivity Homework

Types of Radioactivity

Alpha, beta and gamma are three of the five types of radioactivity.

Only alpha and beta cause ionisation.

Keeping Safe

You must always wear protective clothing and use tongs to handle sources.

You must have a long exposure time and use shielding where possible.

There are three mistakes in Eric's homework.

- (a) (i) Write down the three mistakes.

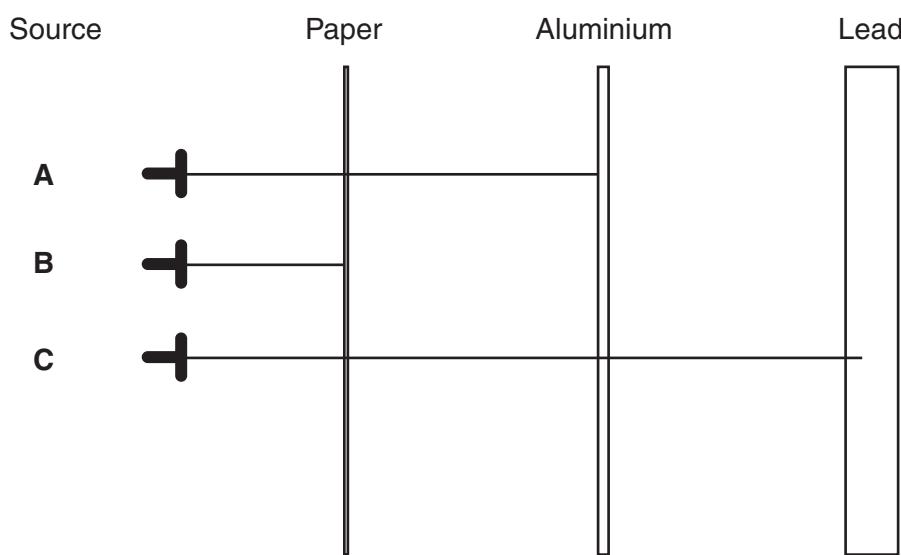
1

2

3

[3]

- (ii) Choose **one** of the mistakes and write down the correct information.


.....

[1]

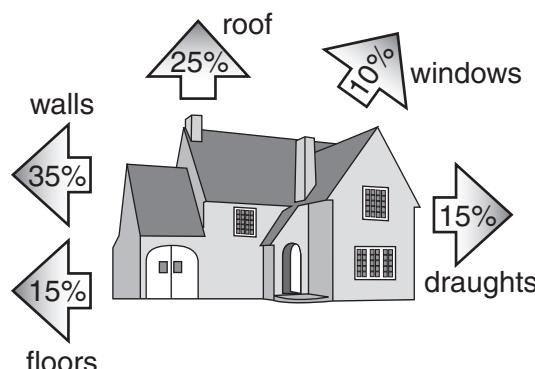
23

- (b) Different types of radiation are stopped by different materials.

The diagram shows three radiation sources and the materials that stop the radiation they emit.

Each source emits one type of radiation.

Use the information in the diagram to draw a line between the **source** and the **type of radiation** it is emitting.


source	type of radiation
A	alpha
B	beta
C	gamma

[2]

SECTION D

- 14 This question is about saving money on household energy bills.

Look at the diagram. It shows information about energy losses from Bob's house.

Some energy saving methods are

- cavity wall insulation
- loft insulation in roof
- draught-proofing windows and doors
- double glazed windows.

- (a) (i) Suggest which **two** methods are likely to reduce Bob's energy bills the most.

.....
.....

[2]

- (ii) The diagram shows Bob's house **loses** 35% of energy through the walls.

Bob considers fitting cavity wall insulation.

His energy bills would be reduced.

Suggest reasons why his energy bills would **not** be reduced by 35%.

.....
.....
.....
.....

[2]

(b) Look at the table. It shows

- the cost to install each energy saving method
- the saving made each year
- the payback time – how long before the savings cover the cost of installation
- the saving on carbon dioxide emissions each year.

Energy saving method	Cost to install in £	Saving per year in £	Payback time in years	Carbon dioxide saving per year in kg
internal wall insulation	5500	460	11.9	1800
external wall insulation	6250	490	12.7	1900
energy efficient boiler	3100	310	10.0	1200
loft insulation in roof	350	180	1.9	730
cavity wall insulation	350	140	2.5	560
energy saving light bulbs	600	35	17.1	110
draught-proofing windows and doors	200	30	6.7	120

(i) Bob considers fitting external wall insulation and an energy efficient boiler.

How much carbon dioxide saving would he make in one year?

answer kg

[1]

(ii) Bob decides to spend up to £1000 on energy saving methods.

He plans to live in his house for 10 years.

Suggest the energy saving methods he should choose.

Explain your answer.

.....

.....

.....

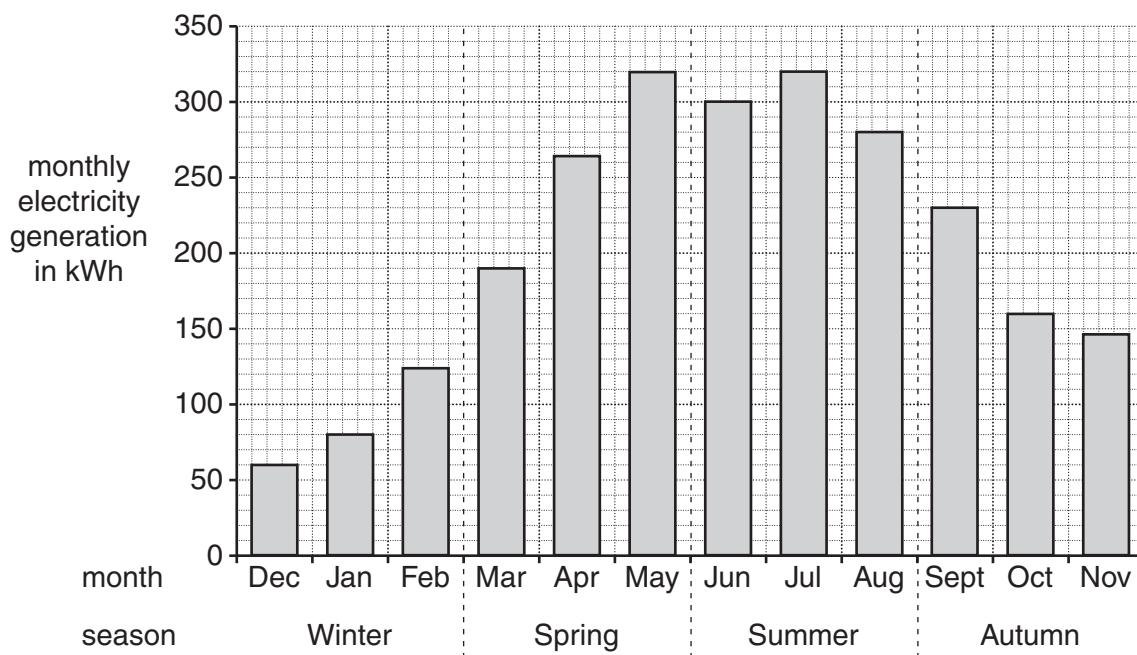
.....

.....

.....

.....

[2]


- (c) Bob is considering fitting solar panels to his roof to reduce his electricity bills.

Solar panels generate electricity.

He looks at some data for a typical house.

Look at the bar chart.

It shows the monthly electricity generation for each month of the year.

- (i) During which **season** will Bob save most energy on his electricity bills?

Explain your answer.

.....
.....
.....

[2]

- (ii) Less electricity is generated in June than in May or July.

Suggest a reason why.

.....
.....

[1]

END OF QUESTION PAPER

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).

Oxford Cambridge and RSA

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GF.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

1 2

1	H	hydrogen	1
---	---	----------	---

Key			
relative atomic mass	atomic symbol	name	atomic (proton) number

7	Li	lithium	3
9	Be	beryllium	4
23	Na	sodium	11
24	Mg	magnesium	12
39	40	Ca	calcium
K	45	Sc	scandium
19	20	Ti	titanium
Rb	48	V	vanadium
85	88	Cr	chromium
Rb	58	Mn	manganese
37	89	Fe	iron
137	88	Co	cobalt
Cs	139	Ni	nickel
55	57	Ru	copper
[226]	[227]	Os	zinc
Fr	Ac*	Pt	30
87	89	Ir	31
88	104	Th	32
105	106	Hg	33
107	109	Tl	34
108	110	Pb	35
109	111	Bi	36
110	111	Rg	37

1	H	hydrogen	1	0	4	He	helium	2			
11	B	boron	5	12	C	carbon	6	14	N	nitrogen	7
27	Al	aluminium	13	28	Si	silicon	14	31	P	phosphorus	15
39	45	Sc	21	51	Ti	titanium	22	55	Mn	manganese	25
85	88	Y	39	91	Nb	zirconium	40	96	Tc	technetium	42
137	139	La*	57	178	Ta	tantalum	72	181	W	tungsten	73
Cs	178	Hf	72	184	Re	rhenium	75	186	Os	osmium	76
55	57	Hf	72	181	Ta	tantalum	73	184	W	tungsten	74
[226]	[227]	Rf	104	[261]	[262]	Db	105	[264]	Sg	bohrium	106
Fr	Ac*	actinium	89	104	105	dubnium	105	107	Hs	hassium	108
87	89	89	104	105	106	107	106	107	Mt	meitnerium	109
88	88	88	104	105	106	107	106	107	Ds	darmstadtium	110
87	89	89	104	105	106	107	106	107	Rg	roentgenium	111

Elements with atomic numbers 112-116 have been reported but not fully authenticated

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.