

Level 3 Certificate

Mathematical Techniques and Applications for Engineers

Unit **H865/01** Component 1

OCR Level 3 Certificate

Mark Schemes for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2014

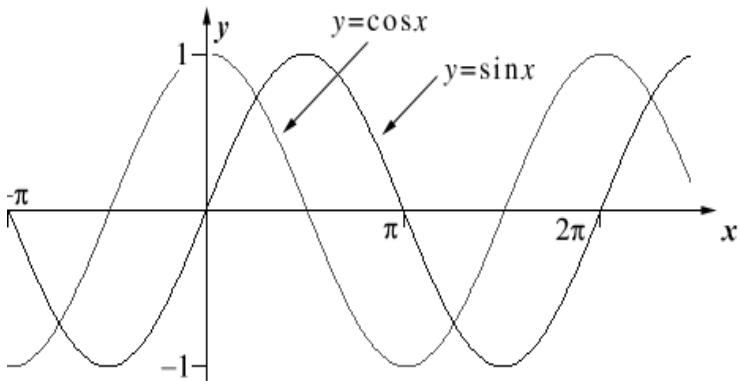
Annotations in scoris

The following annotations are available:

BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.
✓	correct response
✗	incorrect response
ecf	error carried forward
BOD	Benefit of doubt

Question		Expected Answer	Mark	Rationale/Additional Guidance
Section A				
1		$ \begin{aligned} -4(3x - 5) + 2x &= -12x + 20 + 2x = -10x + 20 \\ &\quad -10x \\ &\quad 20 \end{aligned} $	[1] [1]	CAO
2		$ \begin{aligned} x^2 - 7x + 12 &= (x - 3)(x - 4) \\ &\quad (x - 3) \\ &\quad (x - 4) \end{aligned} $	[1] [1]	CAO
3		$ \begin{aligned} (2x - 10)/3 - (4x + 5)/6 &= (4x - 20 - 4x - 5)/6 = -25/6 \\ &\quad -25 \\ &\quad 6. \end{aligned} $	[1] [1]	Accept correct decimal – 4.17 or fraction answer for two marks
4		$ \begin{aligned} (x+1)/2 + (x+2)/3 &= (x+3)/6 \\ 3x + 3 + 2x + 4 &= x + 3 \\ 4x &= -4 \\ x &= -1 \end{aligned} $	[1] [1]	CAO
5		$ \begin{aligned} \text{Angular speed} &= (70 \times 2\pi)/60 \\ &= 7.33 \text{ rad s}^{-1} \end{aligned} $	[1] [1]	Award one mark for correct numerical result with or without the unit Accept $7\pi/3$ or answers between 7.3 and 7.4 rad s^{-1}

Question		Expected Answer	Mark	Rationale/Additional Guidance
Section A				
6	(a)	$v = 50 \sin x$ When $x = 30^\circ$ then $v = 50 \sin 30^\circ = 25$	[1]	
	(b)	When $x = 270^\circ$ then $v = 50 \sin 270^\circ = -50$	[1]	
7		Given $\sin^2 x + \cos^2 x = 1$ Substitute $x = 230^\circ$ then $\sin^2 230^\circ + \cos^2 230^\circ$ equals $0.5868 + 0.4132$ equals 1 QED	[1] [1]	
8		Area = $\sqrt{s(s - a)(s - b)(s - c)}$ Substitute a, b and c to find s then $s = (5 + 8 + 10)/2 = 11.5$ So area = $\sqrt{11.5(11.5 - 5)(11.5 - 8)(11.5 - 10)}$ Area = 19.81 m^2	[1] [1]	Award one mark for correct numerical result with or without the unit
9		$y = 4 \cos x + 2 \sin x$ $= -4 \sin x + 2 \cos x$ $-4 \sin x$ $2 \cos x$	dy/dx [1] [1]	
10		$y = 4 \ln 2x + 2 e^{5x}$ $dy/dx = (4/x) + 10 e^{5x}$ $4/x$ $10 e^{5x}$	[1] [1]	


Question		Expected Answer	Mark	Rationale/Additional Guidance
Section A				
11		$\int \sqrt{x} \, dx = \int x^{1/2} \, dx = (2/3) x^{3/2} + C = [(2/3) \sqrt{x^3}] + C$ $[(2/3) \sqrt{x^3}]$ C	[1] [1]	Accept $(2/3) x^{3/2}$ for one mark
12		$\int_2^4 3x^2 \, dx = [x^3]_2^4 = 4^3 - 2^3 = 56$ $[x^3]_2^4$ 56	[1] [1]	Award one mark for x^3

Question		Expected Answer	Mark	Rationale/Additional Guidance										
Section A														
13		<table border="1"> <thead> <tr> <th>City</th> <th>Number of students</th> </tr> </thead> <tbody> <tr> <td>Berlin</td> <td>22</td> </tr> <tr> <td>London</td> <td>13</td> </tr> <tr> <td>Paris</td> <td>18</td> </tr> <tr> <td>Madrid</td> <td>28</td> </tr> </tbody> </table>	City	Number of students	Berlin	22	London	13	Paris	18	Madrid	28	[2]	Award one mark for correct vertical and horizontal axis and one mark for correct plotting of bars.
City	Number of students													
Berlin	22													
London	13													
Paris	18													
Madrid	28													
14	a	7/12 or 0.583	[1]											
	b	6/11 or 0.545	[1]											
15			[2]	Award one mark for any reasonable closed shape with a tail (smooth, triangular etc.) plus one mark for the tail on the right hand side.										
		Total	[30]											

Question		Expected Answer	Mark	Rationale/Additional Guidance	
Section B					
1	(a)	<p>Given that $L_t = L_o(1 + at)$ Open bracket, then $L_t = L_o + L_o at$ Subtract L_o from both sides, then $L_o at = L_t - L_o$ Divide both sides by $L_o a$, then $t = (L_t - L_o)/L_o a$</p>	[1] [1] [1]	Accept any alternative correct response	
1	(b)	<p>Given that $v^2 = u^2 + 2as$ Subtract $2as$ from both sides, then $u^2 = v^2 - 2as$ Square root both sides, then $u = \sqrt{v^2 - 2as}$</p>	[1] [1]		
1	(c)	<p>Given that $i = nE/(R + nr)$ multiply, then $i(R + nr) = nE$ brackets, then $iR + inr = nE$ from both sides, then $iR = nE - inr$ then $n(E - ir) = iR$ $E - ir$ then $n = iR/(E - ir)$</p>	Cross Open Subtract inr Use a bracket, Divide both sides by	[1] [1] [1] [1] [1]	Accept any alternative correct response
			Total	[10]	

Question		Expected Answer	Mark	Rationale/Additional Guidance
2	(a)	<p>Let S = number of supervisors Let T = number of technicians</p> <p>So $1S + 5T = 1750$ and $6S + 9T = 5250$</p>	[1] [1]	
2	(b)	<p>Given $(x - 1)/[(3x - 5)(x - 3)]$ So $(x - 1)/[(3x - 5)(x - 3)] = [A/(3x - 5)] + [B/(x - 3)]$</p> <p>Multiply both sides by $(3x - 5)(x - 3)$ then $(x - 1) = [A/(x - 3)] + [B/(3x - 5)]$ Because $(x - 3) = 0$ then $x = 3$</p> <p>Substituting gives $2 = 4B$ so $B = 0.5$ Because $(3x - 5) = 0$ then $x = 5/3$ Substituting gives $(5/3) - 1 = A[(5/3) - 3]$ Then $A = -0.5$</p>	[2] [4] [2]	<p>Accept $A/(3x-5) +B/(x-3)$ for two marks and then $A = -0.5$ (or $B = 0.5$) for four marks and then $(A = -0.5)$ or $B = 0.5$ for two marks</p> <p>Accept any alternative correct response</p>
		Total	[10]	

Question			Expected Answer	Mark	Rationale/Additional Guidance
3	(a)	(i)	Angle C = $180^\circ - 80^\circ - 30^\circ$ so C = 70°	[1]	
3	(a)	(ii)	From the sine rule: $a/\sin 80^\circ = 200/\sin 30^\circ$ so $a = (200 \sin 80^\circ)/\sin 30^\circ$ so a = 393.92 mm	[1] [1] [1]	Accept answers between 393 and 394 mm Award one mark for correct numerical result with or without the unit
3	(b)	(i)	Cosine rule: $p^2 = q^2 + r^2 - 2qr \cos P$ In this case q = 120 mm, r = 200 mm and Angle P = 50° $p^2 = 120^2 + 200^2 - 2(120 \times 200) \cos 50^\circ$ p = 153.45 mm	[1] [1] [1]	Accept answers between 153 and 154 mm Award one mark for correct numerical result with or without the unit
3	(b)	(ii)	In this case p = 153.45, q = 120 mm, r = 200 mm $\cos Q = (p^2 + r^2 - q^2)/2ac$ $\cos Q = (153.45^2 + 200^2 - 120^2)/(2 \times 153.45 \times 200)$ So Angle Q = $\cos^{-1} (153.45^2 + 200^2 - 120^2)/(2 \times 153.45 \times 200)$ Q = 36.80°	[1] [1] [1]	Accept ecf. for side p Accept any alternative method that gives a correct solution Accept answers between 36 and 37° Award one mark for correct numerical result with or without the unit
			Total	[10]	

Question		Expected Answer	Mark	Rationale/Additional Guidance
4	(a)		[4]	<p>Award one mark for any one and a half cycle between $-\pi$ and 2π</p> <p>Award one mark for one graph in correct position</p> <p>Award one mark for another graph in correct position.</p> <p>Award one mark for correct labels .</p>
4	(b)	<p>Given equation $2 \cos x = 0.8$ Then $\cos x = 0.4$ so $x = \cos^{-1} 0.4$ $x = 66.42^\circ$ and $x = 293.58^\circ$</p>	[1] [1] [1]	<p>Award one mark for correct numerical results with or without the unit</p> <p>Accept answers between 66 and 67°</p> <p>Accept answers between 293 and 294°</p>
4	(c)	<p>Given equation $2 \cos x = \sin x$ Then $2 = \sin x/\cos x$ Then $\tan x = 2$ so $x = \tan^{-1} 2$ $x = 63.43^\circ$ and $x = 243.43^\circ$</p>	[1] [1] [1]	<p>Award one mark for correct numerical results with or without the unit</p> <p>Accept answers between 63 and 64°</p> <p>Accept answers between 243 and 244°</p>
		Total	[10]	

Question	Expected Answer	Mark	Rationale/Additional Guidance
5 (a)	<p>Given equation $y = x^3 + 1.5x^2 - 18x$</p> $dy/dx = 3x^2 + 3x - 18$ <p>$dy/dx = 0$ for zero gradient</p> $\text{so } 3x^2 + 3x - 18 = 0$ $3(x^2 + x - 6) = 0$ $(x + 3)(x - 2) = 0$ <p>So $x = +2$ or $x = -3$</p>	[1] [1] [1] [1]	
5 (b)	<p>When $x = +2$</p> $y = x^3 + 1.5x^2 - 18x$ $y = (2)^3 + 1.5(2)^2 - 18(2)$ $y = -22$ <p>When $x = -3$</p> $y = (-3)^3 + 1.5(-3)^2 - 18(-3)$ $y = 40.5$	[1] [2]	.

Question		Expected Answer	Mark	Rationale/Additional Guidance
5	(c)	$dy/dx = 3x^2 + 3x - 18$ $d^2y/dx^2 = 6x + 3$ When $x = + 2$ then $d^2y/dx^2 = (6 \times 2) + 3 = +15$ i.e. Minimum turning point When $x = - 3$ then $d^2y/dx^2 = (6 \times -3) + 3 = -15$ i.e. Maximum turning point	[1] [1] [1]	
		Total	[10]	

Question	Expected Answer	Mark	Rationale/Additional Guidance
6 (a)	$\int 4 \sin 5x \, dx$ $= (-4/5 \cos 5x) + C$ $-4/5 \cos 5x$	[1] [1]	Do not award any marks for constant C. This has been tested in section A
6 (b)	<p>Given $y = \cos x$</p> $\text{Then area} = \int_0^{\pi/2} \cos x \, dx$ $= [\sin x]_0^{\pi/2}$ $= (\sin \pi/2) - (\sin 0)$ $= 1 - 0 = 1 \text{ square unit}$	[1] [1] [1] [1]	Award one mark for correct numerical results with or without the unit
6 (c)	<p>Given $v = -0.5t^2 - 3t + 40$</p> $s = \int_{t^1}^{t^2} v \, dt = \int_{t^1}^6 -0.5t^2 - 3t + 40 \, dt$ <p>So</p> $s = [(-0.5 \times t^3)/3 - (3t^2)/2 + 40t]_3^6$ $s = (-36 - 54 + 240) - (-4.5 - 13.5 + 120) = 48 \text{ m}$	[1] [1] [1] [1]	Award one mark for correct numerical results with or without the unit
		Total [10]	

Question		Expected Answer	Mark	Rationale/Additional Guidance																		
7	(a)	<p>(i) Given data: 12 14 14 16 18 18 20 Range = 20 – 12 = 8</p> <p>(ii) By inspection median is the centre value ie. 16</p> <p>(iii) Consider first three values then lower quartile is 14 Consider last three values then upper quartile is 18</p> <p>(iv) Interquartile range = 18 – 14 = 4</p>	[1] [1] [1] [1]																			
7	(b)	<p>(i) Mean $\bar{x} = (78 + 92 + 102 + 72)/4 = 344/4 = 86$</p> <p>(ii)</p> <table border="1"> <thead> <tr> <th>Values x</th> <th>$x - \bar{x}$</th> <th>$(x - \bar{x})^2$</th> </tr> </thead> <tbody> <tr> <td>78</td> <td>-8</td> <td>64</td> </tr> <tr> <td>92</td> <td>6</td> <td>36</td> </tr> <tr> <td>102</td> <td>16</td> <td>256</td> </tr> <tr> <td>72</td> <td>-14</td> <td>196</td> </tr> <tr> <td></td> <td></td> <td>$\Sigma = 552$</td> </tr> </tbody> </table> <p>(iii) Standard deviation = $\sqrt{(552/4)}$ = 11.75</p>	Values x	$x - \bar{x}$	$(x - \bar{x})^2$	78	-8	64	92	6	36	102	16	256	72	-14	196			$\Sigma = 552$	[1] [3] [1] [1]	<p>Accept ecf for summation</p> <p>7(b)(ii) Award one mark for each correct column and one mark for $\Sigma = 552$</p> <p>Accept ecf from 7(b)(ii)</p>
Values x	$x - \bar{x}$	$(x - \bar{x})^2$																				
78	-8	64																				
92	6	36																				
102	16	256																				
72	-14	196																				
		$\Sigma = 552$																				
			Total	[10]																		

Question		Expected Answer	Mark	Rationale/Additional Guidance
8	(a)	The probability of something happening is the likelihood or chance of it happening.	[1]	
8	(b)	Two events are independent if the outcome of one has no effect on the outcome of the other	[2]	
8	(c)	Events are mutually exclusive if they cannot happen at the same time	[2]	
8	(d)	$P(x \text{ and } y) = P(x) \times P(y)$	[1]	Accept $x \times y$
8	(e)	$P(x \text{ or } y) = P(x) + P(y)$	[1]	Accept $x + y$
8	(f)	(i) Probability = 14/40 or 7/20 or 0.35	[1]	
		(ii) Probability = 26/40 or 13/20 or 0.65	[1]	
		(iii) Probability = 32/40 or 0.8	[1]	
		Total	[10]	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

© OCR 2014

