

Level 3 Certificate

Mathematical Techniques and Applications for Engineers

Unit **H865/01** Component 1

OCR Level 3 Certificate

Mark Schemes for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

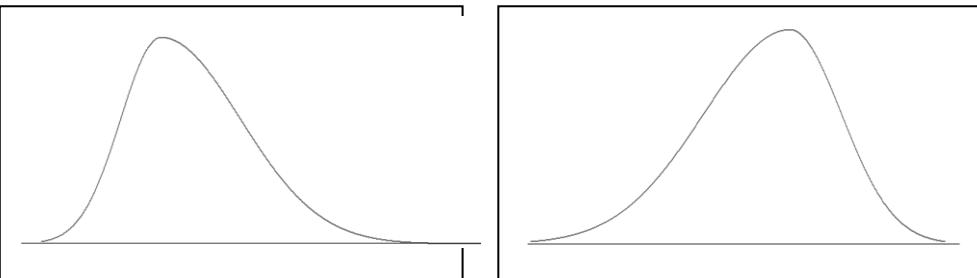
All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2015

Annotations in scoris


The following annotations are available:

BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.
✓	correct response
✗	incorrect response
ecf	error carried forward
BOD	Benefit of doubt

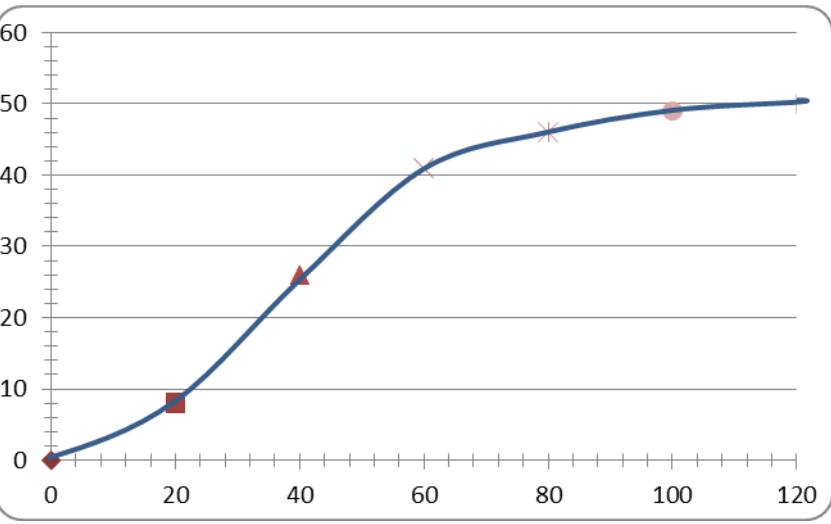
Question	Expected Answer	Mark	Rationale/Additional Guidance
Section A			
1	$ \begin{array}{r} 6x - (8x + 5) = 6x - 8x - 5 = -2x - 5 \\ -2x \\ -5 \end{array} $	[1] [1]	
2	$ \begin{array}{r} x^2 + 5x - 14 = (x + 7)(x - 2) \\ (x + 7) \\ (x - 2) \end{array} $	[1] [1]	
3	$ \begin{array}{l} [(x + 4)/8] - (x - 5)/2 = (x + 4 - 4x + 20)/8 \text{ or } ((2x + 8) - (8x - 40))/16 \\ \text{or } (x + 4)/8 - (4x - 20)/8 \text{ or } (2x + 8)/16 - (8x - 40)/16 \\ = (-3x + 24)/8 \text{ or } (-6x + 48)/16 \\ (-3x + 24) \text{ or } (-6x + 48) \\ 8 \text{ or } 16 \end{array} $	[1] [1]	<p>If denominator is subsequently removed from final answer i.e.</p> <p>final answer = $(-3x + 24)$ or $(-6x + 48)$</p> <p>award one mark only.</p> <p>Also accept $-3x/8 + 3$ for 2 marks</p>
4	$ \begin{array}{l} 6(3x - 5) = 2(4x - 7) \\ 18x - 30 = 8x - 14 \\ 10x = 16 \\ x = 1.6 \end{array} $	[1] [1]	<p>One mark for $18x - 30 = 8x - 14$ or $10x = 16$ or $-10x = -16$</p> <p>CAO</p>

Question	Expected Answer		Mark	Rationale/Additional Guidance
Section A				
5	(a)	$\pi/3$ radians $= \pi \times (360/6 \pi) = 60^\circ$	[1]	Award one mark for correct numerical results with or without the unit.
5	(b)	$120^\circ = 120 \times (2 \pi/360) = \frac{2}{3}\pi = 2.0944$ radians.	[1]	Accept $\frac{2}{3}\pi$ or answers between 2.05 and 2.15 radians.
6		Sine wave.	[1]	Accept $y=\sin(x)$ or just $y=\sin$ or \sin
7		In the triangle ABC angle A = 30° and length of side 'a' = 100 mm. Angle C = $90 - 30 = 60^\circ$ Side c = $a/\tan A =$ $100/\tan 30^\circ = 173.2$ mm. ----- Alternative solution Angle C = $90 - 30 = 60^\circ$ $100/\sin 30 = c/\sin 60$ $c = 100 \sin 60 / \sin 30 = 173.2$ mm	[1] [1] ----- [1] or [1] [1]	Accept answers between 173 and 173.5 mm. Unit not required for full marks.
8		Given cosine x = 3/5. By observation the right-angled triangle will have sides of 3, 4 and 5 units long. So sine x = 4/5 or 0.8	[1] [1]	One mark for triangle drawn with correct values. CAO.

Question	Expected Answer		Mark	Rationale/Additional Guidance
Section A				
9		Given $y = 3 \cos x + 6x^3$ So $dy/dx = -3 \sin x + 18x^2$ $\quad \quad \quad -3 \sin x$ $\quad \quad \quad + 18x^2$	[1] [1]	Allow $-3 \sin x + 18x^2$ Allow $3(-) \sin x + 18x^2$
10		Given $y = \sin x + (1/x) = \sin x + x^{-1}$ Then $dy/dx = \cos x - x^{-2} = \cos x - (1/x^2)$ $\quad \quad \quad \cos x$ $\quad \quad \quad -(1/x^2)$ or $-x^{-2}$	[1] [1]	Allow $\cos(-) x - (1/x^2)$
11		$\int 2 \sin 5x \, dx = -0.4 \cos 5x + C$ $\quad \quad \quad -0.4 \cos 5x$ or $-2/5(\cos 5x)$ $\quad \quad \quad +C$	[1] [1]	
12		$\int_2^5 4x^3 \, dx = \left[x^4 \right]_2^5 = 5^4 - 2^4 = 625 - 16 = 609$ $\quad \quad \quad \left[x^4 \right]_2^5$ $\quad \quad \quad 5^4 - 2^4$ $\quad \quad \quad 609$	[1] [1] [1]	Do not accept error carried forward if incorrect integration is used.

Question	Expected Answer	Mark	Rationale/Additional Guidance
Section A			
13	<p>In a statistical distribution, the curve appears distorted either to the left or to the right.</p>	[2]	<p>Diagram 1 mark</p> <p>Explanation 1 mark</p> <p>Award 2 marks for a clearly annotated diagram</p>
14	<p>Given 6 9 7 11 8 10 6</p> <p>Mode = 6</p> <p>Values arranged in order of magnitude:</p> <p>6 6 7 <u>8</u> 9 10 11</p> <p>Median point = 8</p>	[1]	
15	<p>$P(A)$ = probability that event A happens.</p> <p>$P(B)$ = probability that event B happens.</p>	[1]	<p>Accept similar explanations but these MUST include reference 'Probability' or 'Likelihood' or 'possibility' and must mention (event) A (and B).</p>
		[1]	<p>eg</p> <p>'likelihood of (event) A (happening)'</p> <p>Do not accept eg:</p> <p>'A will happen' or 'A happens' etc</p>
		Total	[30]

Question		Expected Answer	Mark	Rationale/Additional Guidance
Section B				
1	(a)	<p>Given $W = (mv^2)/2$</p> <p>Substitute $m = 5$ and $v = 10$.</p> <p>Then $W = (5 \times 10^2)/2$</p> $= 250$	[1]	
1	(b)	<p>Given that $A = B(1 + 2CD)$</p> <p>Open the brackets then $A = B + 2BCD$</p> <p>Then $2BCD = A - B$</p> <p>So $C = (A - B)/2BD$</p> <hr/> <p>Alternative solution</p> <p>$A/B = (1+2CD)$</p> <p>$A/B - 1 = 2CD$</p> <p>$C = (A/B - 1)/2D$</p>	[1] [1] [1] ----- or [1] [1] [1]	Accept any other correct method.
1	(c)	<p>Given $v^2 = u^2 + 2as$</p> <p>Subtract both sides by $2as$</p> <p>Then $u^2 = v^2 - 2as$</p> <p>Square root both sides</p> <p>So $u = \sqrt{v^2 - 2as}$</p>	[1] [1]	Accept any other correct method.


Question		Expected Answer	Mark	Rationale/Additional Guidance
Section B				
1	(d)	Given $A = B/(B + 2)$ Multiply both sides by $(B + 2)$ then $AB + 2A = B$ Subtract both sides by B then $AB - B = - 2A$ Then $B(A - 1) = - 2A$ So $B = - 2A/(A - 1)$ or $2A/(1 - A)$	[1] [1] [1] [1]	Accept any other correct method.
			Total [10]	

Question	Expected Answer	Mark	Rationale/Additional Guidance
2 (a)	<p>Area of triangle A = $\frac{1}{2}bh$ So perpendicular height $h = 2A/b$ $= (2 \times 1000)/40$ $= 50 \text{ mm.}$</p>	[1] [1]	Unit not required for full marks
2 (b)	<p>Given $x = 8 \text{ m}$, $y = 10 \text{ m}$ and $z = 12 \text{ m.}$</p> <p>Area of triangle A = $\sqrt{s(s-x)(s-y)(s-z)}$ where $s = (x+y+z)/2$ So $s = (8+10+12)/2 = 15$ Then Area A = $\sqrt{15(15-8)(15-10)(15-12)}$ $= \sqrt{1575}$ $= 39.69 \text{ m}^2$</p> <p>-----</p> <p>Alternative solutions</p> <p>$x^2 = y^2 + z^2 - 2yz\cos X$ $\cos X = (x^2 - y^2 - z^2)/(-2yz)$ $\cos X = (8^2 - 10^2 - 12^2)/(-2 \times 10 \times 12) = 0.75$ $X = 41.41^\circ$ Area = $(10 \times 12 \times \sin 41.41)/2$ $= 39.69 \text{ m}^2$</p> <p>-----</p> <p>$y^2 = x^2 + z^2 - 2xz\cos Y$ $\cos Y = (y^2 - x^2 - z^2)/(-2xz)$ $\cos Y = (10^2 - 8^2 - 12^2)/(-2 \times 8 \times 12) = 0.56$ $Y = 55.77$ Area = $(8 \times 12 \times \sin 55.77)/2$ $= 39.69 \text{ m}^2$</p>	[1] [1] [1] [1] [1] [1] ----- or [1] [1] [1] [1] [1] [1] [1] or [1] [1] [1] [1] [1] [1]	<p>BEWARE $\frac{1}{2}(8 \times 10) = 40$ (no marks for this)</p> <p>Accept answers between 39 m^2 and 40 m^2 provided correct working is seen</p> <p>Unit not required for full marks</p>

Question		Expected Answer	Mark	Rationale/Additional Guidance
		$z^2 = x^2 + y^2 - 2xy\cos Z$ $\cos Z = (z^2 - x^2 - y^2) / (-2xy)$ $\cos Z = (12^2 - 8^2 - 10^2) / (-2 \times 8 \times 10) = 0.125$ $Z = 82.82^\circ$ $\text{Area} = (8 \times 10 \times \sin 82.82) / 2$ $= 39.69 \text{ m}^2$	or [1] [1] [1] [1] [1] [1]	
2	(c)	Given angle $B = 30^\circ$, side $a = 12 \text{ m}$ and side $c = 16 \text{ m}$. Area of triangle $A = \frac{1}{2}ac \sin B$ $= \frac{1}{2} \times 12 \times 16 \sin 30^\circ$ $= 96 \times 0.5$ $= 48 \text{ m}^2$	[1] [1] [1]	Unit not required for full marks.
		Total	[10]	

Question		Expected Answer	Mark	Rationale/Additional Guidance
3	(a)	<p>Given $s = 60(20e^{-t/20} + t - 20)$.</p> <p>Velocity = $ds/dt = 60(-e^{-t/20} + 1)$</p> <p>Acceleration = $dv/dt = d^2s/dt^2 = 60(e^{-t/20}/20)$</p> <p>When $t = 10s$</p> <p>Acceleration = $3(e^{-10/20})$ = 1.82 ms^{-2}</p>	[1] [1] [1] [1] [1]	Unit not required for full marks
3	(b)	<p>Given $S = 2\pi r^2 + 400/r = 2\pi r^2 + 400r^{-1}$</p> <p>$ds/dr = 4\pi r - 400r^{-2} = 4\pi r - 400/r^2$</p> <p>Surface area is a minimum when $ds/dr = 0$</p> <p>So $4\pi r - 400/r^2 = 0$</p> <p>$4\pi r = 400/r^2$</p> <p>$4\pi r^3 = 400$</p> <p>$r^3 = 400/4\pi$ So $r = 3.17$</p>	[1] [1] [1] [1] [1] [1]	Allow solutions by trial and error (4 marks) for answers between 3.0 and 3.3 (2 marks)
		Total	[10]	

Question		Expected Answer			Mark	Rationale/Additional Guidance	
4	(a)	(i)	Time (minutes)	Tally	Cumulative frequency (f)	[1]	
			$0 < t \leq 20$	8	8		
			$20 < t \leq 40$	18	26		
			$40 < t \leq 60$	15	41		
			$60 < t \leq 80$	5	46		
			$80 < t \leq 100$	3	49		
			$100 < t \leq 120$	1	50		

Question		Expected Answer	Mark	Rationale/Additional Guidance
4	(a) (ii)	<p>Cf</p> <p>Time</p>	[3]	<p>Consider ECF provided there is an obvious upward trend of values up to about 50 in the table.</p> <p>Award one mark for six correctly plotted points</p> <p>Award one mark for both correct axes.</p> <p>Award one mark for lines or curves joining points.</p>
4	(a)	(iii) median number = 39	[1]	Accept answers between 36 and 42
4	(a)	(iv) 60 th percentile = 45	[1]	Accept answers between 43 and 47
4	(b)	$\Sigma x = 27 + 35 + 23 + 40 + 35 = 160$ $\text{Mean} = \Sigma x/n = 160/5 = 32$ $\Sigma x^2 = 27^2 + 35^2 + 23^2 + 40^2 + 35^2 = 5308$ $\text{Standard deviation} = \sqrt{(\Sigma x^2/n) - (\Sigma x/n)^2}$ $= \sqrt{(5308/5) - (160/5)^2}$ $= 6.13$	[1] [1] [1] [1]	Accept answers between 6 and 6.5
			Total	[10]

Question		Expected Answer	Mark	Rationale/Additional Guidance
5	(a) (i)	<p>Given $v = u + at$.</p> <p>$v = 60$ when $t = 10$ and $v = 30$ when $t = 4$.</p> <p>So $60 = u + 10a$ Equation 1</p> <p>And $30 = u + 4a$ Equation 2</p> <p>Subtract eqn 2 from eqn 1</p> <p>Then $30 = 6a$</p> <p>So $a = 30/6 = 5$</p> <p>Substitute $a = 5$ into eqn 1</p> <p>So $60 = u + (10 \times 5)$</p> <p>Then $u = 60 - 50 = 10$</p>	[1] [1] [1] [1] [1] [1]	
5	(a) (ii)	<p>When $t = 6$ use equation $v = 10 + 5t$</p> <p>$v = 10 + (5 \times 6)$</p> <p>$= 40$</p>	[1]	
5	(b)	<p>Given $3x^2 + 14x + 8 = 0$.</p> <p>By inspection $3x^2 = (3x)(x)$</p> <p>And $8 = (1)(8)$ or $(2)(4)$</p> <p>By factorisation $(3x + 2)(x + 4) = 0$</p> <p>So $(3x + 2) = 0$ or $(x + 4) = 0$</p> <p>When $3x + 2 = 0$</p> <p>Then $3x = -2$ so $x = -2/3$ or $0.666\dots$ or 0.67</p> <p>Likewise when $(x + 4) = 0$</p> <p>Then $x = -4$</p>	[1] [1] [1]	

Question		Expected Answer	Mark	Rationale/Additional Guidance
		<p>Alternative method</p> $x = \frac{(-b \pm \sqrt{b^2 - 4ac})}{2a}$ $x = \frac{(-14 \pm \sqrt{14^2 - 4 \times 3 \times 8})}{2 \times 3}$ $x = \frac{(-14 \pm \sqrt{14^2 - 4 \times 3 \times 8})}{2 \times 3}$ $x = \frac{(-14 \pm \sqrt{100})}{6}$ $x = \frac{(-14 \pm 10)}{6}$ $x = -4/6 \text{ or } -2/3 \text{ or } 0.666\ldots \text{ or } 0.67$ $x = -24/6 \text{ or } -4$	<p>or</p> <p>[1]</p> <p>[1]</p> <p>[1]</p>	
		Total	[10]	

Question		Expected Answer	Mark	Rationale/Additional Guidance
6	(a)	<p>In a triangle ABC, $AB = 5 \text{ m}$, $AC = 8 \text{ m}$ and angle ABC = 42°.</p> <p>Let angle ABC be angle B. Let angle ACB be angle C.</p> <p>Sine Rule: $AC/\sin B = AB/\sin C$ so $\sin C = (AB \sin B)/AC$ Then $\sin C = (5 \sin 42^\circ)/8 = 0.4182$ So $C = \sin^{-1} 0.4182 = 24.72^\circ$ So Angle ACB is 24.72°</p>	[1] [1] [1] [1]	Accept answers between 24 and 25° .
6	(b)	<p>In a triangle ABC. Side a = 40 mm, side b = 70 mm and angle C = 50°</p> <p>Cosine Rule: $\cos C = (a^2 + b^2 - c^2)/2ab$ So $c^2 = a^2 + b^2 - 2ab \cos C$ $= (40^2 + 70^2 - [2 \times 40 \times 70 \cos 50^\circ])$ $= 1600 + 4900 - [5600 \times 0.6428]$ $= 1600 + 4900 - 3600$ $= 2900$ So $c = \sqrt{2900} = 53.85 \text{ mm}$.</p>	[1] [1] [1] [1]	Accept answers between 53 and 54mm.
6	(c)	<p>Given: $\sin 30^\circ + \cos 60^\circ + \tan 45^\circ = 2$ LHS = $0.5 + 0.5 + 1 = 2$ RHS = 2 Therefore 2 = 2 QED</p>	[1] [1]	
			Total	[10]

Question	Expected Answer	Mark	Rationale/Additional Guidance
7 (a)	<p>Integrate $\cos 2x + 1/x^2 + \sqrt{x}$ with respect to x.</p> <p>So $\int \cos 2x + 1/x^2 + \sqrt{x} \, dx = \int \cos 2x + x^{-2} + x^{0.5} \, dx$</p> $= \frac{1}{2} \sin 2x + (x^{-1})/-1 + (x^{1.5})/1.5 + C$ $= \frac{1}{2} \sin 2x - 1/x + \frac{2}{3} \sqrt{x^3} + C$	[5]	<p>Award one mark for $\int \cos 2x + x^{-2} + x^{0.5} \, dx$.</p> <p>Award one mark for $\frac{1}{2} \sin 2x$</p> <p>Award one mark for $-1/x$ or $-x^{-1}$</p> <p>Award one mark for $+ \frac{2}{3}$ or $1/1.5$</p> <p>Award one mark for $\sqrt{x^3}$ or $x^{3/2}$ or $x^{1.5}$</p> <p>+C is not required for full marks</p>
7 (b)	<p>Given $v = 4 + 6t$ where $t_1 = 0$ and $t_2 = 5$.</p> <p>Distance = $\int_0^5 (4 + 6t) \, dt$</p> $= [4t + 3t^2]_0^5$ $= (4 \times 5) + (3 \times 5^2) - 0$ $= 95 \text{ metres}$	[1] [1] [1]	<p>5</p> <p>Award one mark for Distance = $\int_0^5 (4 + 6t) \, dt$.</p> <p>5</p> <p>Award one mark for $[4t + 3t^2]_0^5$</p> <p>Unit not required for full marks</p>

Question	Expected Answer	Mark	Rationale/Additional Guidance
7 (c)	<p>Given $F = 8s - s^2$ where $s_1 = 2$ and $s_2 = 6$</p> $\text{Work done} = \int_2^6 (8s - s^2) ds$ $= [4s^2 - \frac{1}{3}s^3]_2^6$ $= (\{4 \times 6^2\} - \{\frac{1}{3} \times 6^3\}) - (\{4 \times 2^2\} - \{\frac{1}{3} \times 2^3\})$ $= (144 - 72) - (16 - 2\frac{2}{3})$ $= 72 - 13\frac{1}{3}$ $= 58\frac{2}{3} \text{ or } 58.666\ldots \text{ or } 58.67 \text{ newtons}$	<p>[1]</p> <p>[1]</p>	

Total

[10]

Question	Expected Answer	Mark	Rationale/Additional Guidance
8 (a)	<p>An event that is affected by previous events.</p> <p>Suitable example involving an experiment 'without replacement' or equivalent.</p>	[1] [1]	
8 (b)	<p>Total number of screws = $110 + 120 + 70 = 300$.</p> <p>Assume that three separate draws take place.</p> <p>Draw One: Probability of selecting a steel screw is $120/300$.</p> <p>Draw Two: There are now 119 steel screws in a total of 299 Probability of selecting a steel screw is $119/299$.</p> <p>Draw Three: There are now 118 steel screws in a total of 298. Probability of selecting a steel screw is $118/298$</p> <p>The probability of choosing a steel screw on the first draw and the second and the third draw is: $(120/300) \times (119/299) \times (118/298)$ is 0.063</p>	[1] [1] [1] [1]	

Question		Expected Answer	Mark	Rationale/Additional Guidance
8	(c)	Mutually exclusive Not Mutually exclusive Not Mutually exclusive Mutually exclusive	[4]	Award one mark for each correct response.
			Total [1]	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning
Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

© OCR 2015

