

Level 3 Certificate

Mathematical Techniques and Applications for Engineers

Unit **H865/01** Component 1

OCR Level 3 Certificate

Mark Schemes for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

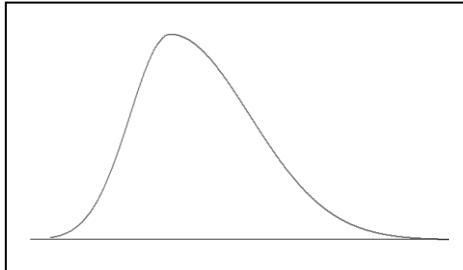
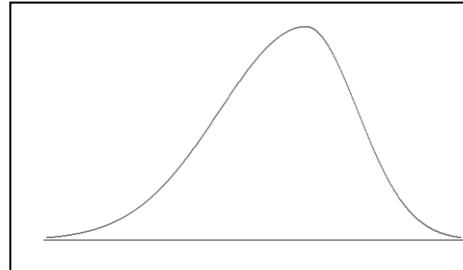
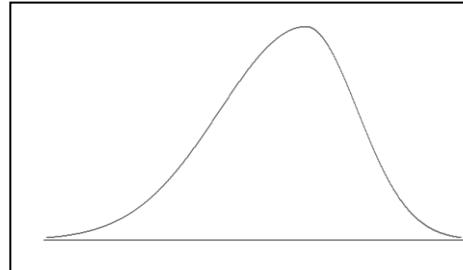
All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

These are the annotations, (including abbreviations), including those used in scoris, which are used when marking




<i>Stamp</i>	<i>Description</i>
	Tick
	Cross
	Error carried forward
	Benefit of doubt

General :

Award full marks for correct answer seen without working unless otherwise stated.

Question	Mark	Rationale/Additional Guidance	
Section A			
1	$4(2x + 5) - 3x = 8x + 20 - 3x = 5x + 20$ 5x 20	[1] [1]	
2	$x^2 + 9x + 20 = (x + 4)(x + 5)$ (x + 4) (x + 5)	[1] [1]	
3	$(x + 3)/2 - (x + 4)/5 = (5x + 15 - 2x - 8)/10 = (3x + 7)/10$ (3x + 7) 10	[1] [1]	Award two marks for $0.3x + 0.7$.
4	$5(x + 2) - 6(x - 3) = 0$ $5x + 10 - 6x + 18 = 0$ $-x + 28 = 0$ $x = 28$	[1] [1]	Award one mark for $5x + 10 - 6x + 18 = 0$ or $-x + 28 = 0$. Award one mark for $x = 28$.
5	One revolution = 2π radians Speed = $50 \times 2\pi = 100\pi = 314.2$ radians per minute	[1] [1]	Award one mark for one revolution = 2π radians. Award one mark for 100π or answers between 314 and 315 with or without units.
6	Given $i = I \sin \theta$		Award one mark for 30° and award one mark

Question	Expected Answer	Mark	Rationale/Additional Guidance
Section A			
	When $i = 5 \text{ A}$ and $I = 10 \text{ A}$ then $5 = 10 \sin \phi$ So $\phi = \sin^{-1} 5/10 = 30^\circ$ or 150°	[2]	for 150° .
7	Given $\sec x = \sec x \cdot \sin^2 x$ So $\sec x(1 - \sin^2 x)$ But $1 - \sin^2 x = \cos^2 x$ and $\sec x = 1/\cos x$ So $\sec x(1 - \sin^2 x) = \cos^2 x/\cos x = \cos x$	[2]	Award one mark for $\sec x(1 - \sin^2 x)$ or $1 - \sin^2 x = \cos^2 x$ and $\sec x = 1/\cos x$ or $\sec x(1 - \sin^2 x) = \cos^2 x/\cos x$. Award one mark for $\cos x$.
8		[2]	Award one mark for correct positive half cycle and award one mark for correct negative half cycle.
9	Given $y = 1/x = x^{-1}$ So $dy/dx = -x^{-2} = -1/x^2$	x^{-1} [1] $-x^{-2}$ or $-1/x^2$ [1]	
10	Given $y = 3 \sin 4x$ Then $dy/dx = (3 \times 4) \cos 4x = 12 \cos 4x$	12 Cos 4x [1] [1]	

Question	Expected Answer	Mark	Rationale/Additional Guidance
Section A			
11	$\int \sqrt{x} \, dx = \int x^{1/2} \, dx$ $= (x^{1.5})/1.5 + C$ $= \frac{2}{3} \sqrt{x^3} + C$	$\frac{2}{3} \sqrt{x^3}$ C	[1] [1] <p>Also accept $\frac{2x^{\frac{3}{2}}}{3} + C$ OE</p>
12	<p>In bar charts, the groups are typically categorical variables i.e. the width of each bar is the same</p> <p>In histograms the groups are typically intervals of another continuous variable i.e. the width of each bar is different.</p>	[1] [1]	<p>Also award marks for</p> <p>In a bar chart the frequency is indicated by the height of the bar i.e. the y axis indicates the frequency. In a histogram the frequency is indicated by the area of the bar i.e. the y axis indicates the frequency density.</p> <p>Also in a histogram the bars CAN HAVE different widths and always touch at their boundaries. In a bar chart the width of the bars are not significant and normally do not touch each other.</p>
13	<p>.</p> <p>Positive skew</p> <p>Negative skew</p>	[2]	<p>Award one mark for each correct skew.</p>

Question	Expected Answer	Mark	Rationale/Additional Guidance
Section A			
14	Probability = $1 - (3/5 + 1/4)$ = 3/20	[1] [1]	
15	Assume the 12 components are place in a random order. $P(\text{last component is white}) =$ (number of whites)/(total number of components) Probability = 7/12	[2]	Award one mark for understanding. Award one mark for 7/12.
	Total	[30]	

Question		Expected Answer	Mark	Rationale/Additional Guidance
Section B				
1	(a)	Given $PV = mRT$ Divide both sides by mR Then $T = PV/mR$	[1]	
1	(b)	Given $L_t = L_o(1 + \alpha t)$ Open brackets $L_t = L_o + L_o \alpha t$ Then $L_o \alpha t = L_t - L_o$ So $\alpha = (L_t - L_o) / L_o t$	[1] [1] [1]	Accept any other correct method.
1	(c)	Given $D/d = \sqrt{(f + p)/(f - p)}$ Square both sides Then $D^2/d^2 = (f + p)/(f - p)$ Cross multiply Then $D^2(f - p) = d^2(f + p)$ Open brackets Then $D^2f - D^2p = d^2f + d^2p$ So $D^2f - d^2f = d^2p + D^2p$ Then $f(D^2 - d^2) = p(d^2 + D^2p)$ So $f = p(d^2 + D^2p) / (D^2 - d^2)$	[1] [1] [1] [1] [1] [1]	Accept any other correct method.
			Total	[10]

Question		Expected Answer	Mark	Rationale/Additional Guidance
2	(a)	<p>Given $x^2 - 10x + 24 = 0$</p> <p>By inspection</p> $x^2 = (x, x)$ $24 = (1, 24)$ or $(2, 12)$ or $(3, 8)$ and $(4, 6)$ <p>By trial and error</p> $(x - 4)(x - 6) = 0$ <p>So $(x - 4) = 0$ and $(x - 6) = 0$</p> <p>Therefore $x = 4$ or 6</p>	[3]	<p>Award one mark for $(x - 4)(x - 6) = 0$.</p> <p>Award one mark for $(x - 4) = 0$ and $(x - 6) = 0$.</p> <p>Award one mark for $x = 4$ or 6.</p>
2	(b)	<p>(i) Original area of sheet metal = $8 \times 5 = 40 \text{ m}^2$</p> <p>New area of sheet metal = $40 + 50\% \text{ of } 40 = 60 \text{ m}^2$</p> <p>Original length = 8 m New length = $x + 8$</p> <p>Original width = 5 m New width = $x + 5$</p> <p>Therefore in terms of x</p> <p>New area = $(x + 8)(x + 5)$</p> <p>So $(x + 8)(x + 5) = 60$</p> <p>Then $x^2 + 5x + 8x + 40 = 60$</p> <p>So $x^2 + 13x - 20 = 0$ QED</p>	[4]	<p>Award one mark for 60 m^2.</p> <p>Award one mark for new length = $x + 8$ and new width = $x + 5$.</p> <p>Award one mark for $(x + 8)(x + 5) = 60$.</p> <p>Award one mark for $x^2 + 5x + 8x + 40 = 60$ or $x^2 + 13x - 20 = 0$.</p>
2	(b)	<p>(ii) Given $x^2 + 13x - 20 = 0$</p> <p>Use the quadratic formula</p> $x = [-b \pm \sqrt{(b^2 - 4ac)}]/(2a)$ <p>Where $a = 1$, $b = 13$ and $c = -20$.</p> <p>So $x = [-13 \pm \sqrt{(13^2 - 4 \times 1 \times -20)}]/2$</p> $x = [-13 \pm \sqrt{(169 + 80)}]/2$ $x = [-13 \pm \sqrt{(169 + 80)}]/2$ $x = [-13 \pm \sqrt{(249)}]/2$ $x = [-13 \pm 15.78]/2$ $x = 1.39 \text{ m}$	[3]	<p>Award one mark for $x = [-b \pm \sqrt{(b^2 - 4ac)}]/(2a)$</p> <p>Award one mark for intermediate calculations.</p> <p>Award one mark for answers between 1.35 and 1.45 with or without units.</p>
		Total	[10]	

Question		Expected Answer	Mark	Rationale/Additional Guidance
3	(a)	(i) $\cos BCA = 1.5/4.2$ $\text{Angle } BCA = \cos^{-1} 1.5/4.2 = 69.1^\circ$ Assumes base of ladder is 1.5 m from base of wall.	[2]	Award one mark for $\cos BCA = 1.5/4.2$. Award one mark for angle BCA between 69 and 69.5° with or without units.
		(ii) The ladder is safe because angle BCA is 69.1° which comes inside the safety limits of 68 to 82° .	[1]	Accept ECF from part(i) So unsafe if answer in (i) is outside safety limits.
3	(b)	(i) $AB = 20 \cos 30^\circ$ $= 17.32 \text{ m}$ $BD = 20 \sin 30^\circ$ $= 10 \text{ m}$	[4]	Award one mark for $AB = 20 \cos 30^\circ$. Award one mark for 17.32 m with or without the unit. Award one mark for $BD = 20 \sin 30^\circ$. Award one mark for 10 m with or without the unit.
		(ii) $\text{Angle } C = \sin^{-1} 10/15 = 41.8^\circ$	[1]	
		(iii) $BC = 15 \cos 41.8^\circ = 11.18 \text{ m}$ or $BC = \sqrt{(15^2 + 10^2)} = 11.8 \text{ m}$	[1]	
		(iv) $AB = 11.18 + 17.32 = 28.5 \text{ m}$	[1]	
			Total	[10]

Question		Expected Answer	Mark	Rationale/Additional Guidance	
4	(a)	<p>Let angle of elevation be x° then $\tan x^\circ = 20/40 = 0.5$ so angle $x^\circ = \tan^{-1} 0.5 = 26.57^\circ$</p> <p>Assumes that: 'A vertical post of height 1 m and a vertical radio mast of 21 m are mounted on horizontal ground with a distance of 40 m between their bases. Calculate the angle of elevation to the top of the radio mast from the top of the post.'</p>	[2]	<p>Award one mark for $\tan x = 20/40 = 0.5$. Award one mark for angle $x = \tan^{-1} 0.5$ or answers between 26 and 27° with or without units.</p>	
4	(b)	(i)	<p>Angle A + Angle B + Angle C = 180° So Angle B = $180^\circ - \text{Angle A} - \text{Angle C}$ = $180^\circ - 80^\circ - 45^\circ$ = 55°</p>	[2]	<p>Award one mark for Angle A + Angle B + Angle C = 180° or Angle B = $180^\circ - \text{Angle A} - \text{Angle C}$. Award one mark for 55°.</p>
4	(b)	(ii)	<p>$AB/\sin 45^\circ = 5/\sin 55^\circ$ $AB = (5 \sin 45^\circ)/\sin 55^\circ$ = 4.316 m</p>	[3]	<p>Award one mark for $AB/\sin 45^\circ = 5/\sin 55^\circ$. Award one mark for $AB = (5 \sin 45^\circ)/\sin 55^\circ$. Award one mark for answers between 4.3 and 4.4 m with or without units.</p>
4	(b)	(iii)	<p>Area of triangle = $\frac{1}{2} (AC)(AB) \sin A^\circ$ = $\frac{1}{2} \times 5 \times 4.316 \sin 80^\circ$ = 10.626 m²</p>	[3]	<p>Award one mark for $\text{Area} = \frac{1}{2} (AC)(AB) \sin A^\circ$. Award one mark for $\frac{1}{2} \times 5 \times 4.316 \sin 80^\circ$. Award one mark for answers between 10 and 11 m² with or without units.</p>
			Total	[10]	


Question		Expected Answer	Mark	Rationale/Additional Guidance
5	(a)	<p>Given $y = 2x^3 - 24x - 1$ Then $dy/dx = 6x^2 - 24$ At zero gradient $dy/dx = 0$ Therefore $6x^2 - 24 = 0$ So $6x^2 = 24$ and $x = \pm 2$ Assumes that values of x are required</p>	[2]	<p>Award one mark for $dy/dx = 6x^2 - 24$. Award one mark for $x = \pm 2$.</p>
5	(b)	<p>$d^2y/dx^2 = 12x$ At $x = +2$ then $d^2y/dx^2 = 12 \times 2 = +24$ When d^2y/dx^2 gives a positive value we have a minimum value for y. So $y_{\min} = 2x^3 - 24x - 1$ $= (2 \times 2^3) - (24 \times 2) - 1$ $= 16 - 48 - 1$ $= -33$ Alternative solution y at $x = 2$ $= (2 \times 2^3) - (24 \times 2) - 1$ $= 16 - 48 - 1$ $= -33$</p>	[4]	<p>Award one mark for $d^2y/dx^2 = 12x$. Award one mark for $x = +2$ then $d^2y/dx^2 = +24$. Award one mark for $y_{\min} = 2x^3 - 24x - 1$ or $(2 \times 2^3) - (24 \times 2) - 1$ or $16 - 48 - 1$. Award one mark for -33.</p>
5	(c)	<p>$d^2y/dx^2 = 12x$ At $x = -2$ then $d^2y/dx^2 = 12 \times -2 = -24$ When d^2y/dx^2 gives a negative value we have a maximum value for y. So $y_{\max} = 2x^3 - 24x - 1$ $= (2 \times -2^3) - (24 \times -2) - 1$ $= -16 + 48 - 1$ $= +31$</p>	[4]	<p>Award one mark for $x = -2$ then $d^2y/dx^2 = -24$. Award one mark for d^2y/dx^2 gives a negative value we have a maximum value for y. Award one mark for $y_{\max} = 2x^3 - 24x - 1$ or $(2 \times -2^3) - (24 \times -2) - 1$ or $-16 + 48 - 1$. Award one mark for $+31$.</p>

Question		Expected Answer	Mark	Rationale/Additional Guidance
		<p>Alternative solution</p> <p>y at x = -2</p> $\begin{aligned} &= 2x^3 - 24x - 1 \\ &= (2x - 2^3) - (24x - 2) - 1 \\ &= -16 + 48 - 1 \\ &= + 31 \end{aligned}$ <p>So Maximum at (-2, 31)</p> <p>Minimum at (2, -33)</p>		
		Total	[10]	

Question			Expected Answer	Mark	Rationale/Additional Guidance
6	(a)	(i)	<p>Given $x = 10t^3 + 6t^2 - 4t + 3$</p> <p>Velocity = $dx/dt = 30t^2 + 12t - 4$</p> <p>When $t = 2$ seconds</p> <p>Velocity = $(30 \times 2^2) + (12 \times 2) - 4$ = 140 m s^{-1}</p>	[2]	<p>Award one mark for Velocity = $dx/dt = 30t^2 + 12t - 4$.</p> <p>Award one mark for Velocity = $(30 \times 2^2) + (12 \times 2) - 4$ or 140 m s^{-1} with or without units.</p>
6	(a)	(ii)	<p>$dx/dt = 30t^2 + 12t - 4$</p> <p>Acceleration = $d^2x/dt^2 = 60t + 12$</p> <p>When $t = 2$ seconds</p> <p>Acceleration = $(60 \times 2) + 12$ = 132 m s^{-2}</p>	[2]	<p>Award one mark for Acceleration = $d^2x/dt^2 = 60t + 12$.</p> <p>Award one mark for Acceleration = $(60 \times 2) + 12$ or 132 m s^{-2} with or without units.</p>
6	(b)		<p>Given $dy/dx = 4x - (10/\sqrt{x}) - 5$</p> <p>Then $y = \int (4x - (10/\sqrt{x}) - 5) dx$ = $\int (4x - (10x^{-1/2}) - 5) dx$ = $2x^2 - (20\sqrt{x}) - 5x + C$</p> <p>At point P, $x = 4$ and $y = 6$</p> <p>So</p> <p>$6 = (2 \times 4^2) - (20\sqrt{4}) - (5 \times 4) + C$</p> <p>$6 = 32 - 40 - 20 + C$</p> <p>So $C = 34$</p> <p>Therefore $y = f(x) = 2x^2 - (20\sqrt{x}) - 5x + 34$</p>	[6]	<p>Award one mark for $y = \int (4x - (10/\sqrt{x}) - 5) dx$.</p> <p>Award one mark for $y = \int (4x - (10x^{-1/2}) - 5) dx$.</p> <p>Award one mark for $y = 2x^2 - (20\sqrt{x}) - 5x + C$.</p> <p>Award one mark for $6 = (2 \times 4^2) - (20\sqrt{4}) - (5 \times 4) + C$ or $6 = 32 - 40 - 20 + C$.</p> <p>Award one mark for $C = 34$.</p> <p>Award one mark for $y = f(x) = 2x^2 - (20\sqrt{x}) - 5x + 34$.</p>
			Total	[10]	

Question		Expected Answer			Mark	Rationale/Additional Guidance																				
7	(a)		<table border="1"> <thead> <tr> <th>X</th> <th>$X - \bar{X}$</th> <th>$(X - \bar{X})^2$</th> </tr> </thead> <tbody> <tr> <td>5</td> <td>- 4</td> <td>16</td> </tr> <tr> <td>7</td> <td>- 2</td> <td>4</td> </tr> <tr> <td>9</td> <td>0</td> <td>0</td> </tr> <tr> <td>11</td> <td>2</td> <td>4</td> </tr> <tr> <td>13</td> <td>4</td> <td>16</td> </tr> <tr> <td>$\sum X = 45$</td> <td></td> <td>$\sum(X - \bar{X})^2 = 40$</td> </tr> </tbody> </table> <p>Mean $\bar{X} = 45/5 = 9$ Standard deviation $s = \sqrt{40/5} = 2.828$</p>	X	$X - \bar{X}$	$(X - \bar{X})^2$	5	- 4	16	7	- 2	4	9	0	0	11	2	4	13	4	16	$\sum X = 45$		$\sum(X - \bar{X})^2 = 40$	[6]	<p>Award one mark for $\sum X = 45$.</p> <p>Award one mark for Mean $\bar{X} = 45/5 = 9$.</p> <p>Award one mark for $X - \bar{X}$ column.</p> <p>Award one mark for $(X - \bar{X})^2$ column.</p> <p>Award one mark for $\sum(X - \bar{X})^2 = 40$.</p> <p>Award one mark for $s = \sqrt{40/5} = 2.828$</p>
X	$X - \bar{X}$	$(X - \bar{X})^2$																								
5	- 4	16																								
7	- 2	4																								
9	0	0																								
11	2	4																								
13	4	16																								
$\sum X = 45$		$\sum(X - \bar{X})^2 = 40$																								

7	(b)	<p>cf</p> <p>Median</p> <p>Lower quartile</p> <p>Upper quartile</p>	[4]	<p>Award one mark for a median mark of between 32 and 34.</p> <p>Award one mark for a lower quartile mark of between 24 and 26.</p> <p>Award one mark for an upper quartile mark of between 38 and 40.</p> <p>Award one mark for 60 hours.</p>
			Total	[10]

Question	Expected Answer	Mark	Rationale/Additional Guidance																		
8 (a)	<table border="1" data-bbox="467 397 1149 971"> <thead> <tr> <th data-bbox="467 397 956 397">Statement</th><th data-bbox="956 397 1149 397"></th></tr> </thead> <tbody> <tr> <td data-bbox="467 397 956 457">If $P(A)$ equals zero, event A will almost definitely not occur.</td><td data-bbox="956 397 1149 457">✓</td></tr> <tr> <td data-bbox="467 457 956 519">If $P(A)$ is close to zero, there is a small chance that event A will occur.</td><td data-bbox="956 457 1149 519">✓</td></tr> <tr> <td data-bbox="467 519 956 581">If $P(A)$ equals zero, event A will almost definitely occur.</td><td data-bbox="956 519 1149 581"></td></tr> <tr> <td data-bbox="467 581 956 641">If $P(A)$ equals 0.5, there is a 50-50 chance that event A will occur.</td><td data-bbox="956 581 1149 641">✓</td></tr> <tr> <td data-bbox="467 641 956 703">If $P(A)$ equals 0.5, there is a 50-50 chance that event A will not occur.</td><td data-bbox="956 641 1149 703">✓</td></tr> <tr> <td data-bbox="467 703 956 763">If $P(A)$ is close to one, there is a strong chance that event A will occur.</td><td data-bbox="956 703 1149 763">✓</td></tr> <tr> <td data-bbox="467 763 956 825">If $P(A)$ equals one, event A will almost definitely occur.</td><td data-bbox="956 763 1149 825">✓</td></tr> <tr> <td data-bbox="467 825 956 886">If $P(A)$ equals one, event A will almost definitely not occur.</td><td data-bbox="956 825 1149 886"></td></tr> </tbody> </table>	Statement		If $P(A)$ equals zero, event A will almost definitely not occur.	✓	If $P(A)$ is close to zero, there is a small chance that event A will occur.	✓	If $P(A)$ equals zero, event A will almost definitely occur.		If $P(A)$ equals 0.5, there is a 50-50 chance that event A will occur.	✓	If $P(A)$ equals 0.5, there is a 50-50 chance that event A will not occur.	✓	If $P(A)$ is close to one, there is a strong chance that event A will occur.	✓	If $P(A)$ equals one, event A will almost definitely occur.	✓	If $P(A)$ equals one, event A will almost definitely not occur.		[5]	<p>If there are more than five ✓ award zero.</p> <p>If there are up to five ✓ award one mark for each correct response.</p>
Statement																					
If $P(A)$ equals zero, event A will almost definitely not occur.	✓																				
If $P(A)$ is close to zero, there is a small chance that event A will occur.	✓																				
If $P(A)$ equals zero, event A will almost definitely occur.																					
If $P(A)$ equals 0.5, there is a 50-50 chance that event A will occur.	✓																				
If $P(A)$ equals 0.5, there is a 50-50 chance that event A will not occur.	✓																				
If $P(A)$ is close to one, there is a strong chance that event A will occur.	✓																				
If $P(A)$ equals one, event A will almost definitely occur.	✓																				
If $P(A)$ equals one, event A will almost definitely not occur.																					
8 (b) (i)		[4]	<p>There are 8 learners who can operate a centre lathe and a milling machine go in the intersection because they need to be in both circles.</p> <p>The 7 learners who cannot operate a centre lathe or milling machine go on the outside.</p> <p>There are 13 learners who operate a milling machine, so the numbers in the milling machine circle should add up to 13.</p> <p>We already have 8 in the intersection, so there must be 5 who operate a milling machine but not a centre</p>																		

			As the question is written the 11 should be 19 and the 5 should 13. I have suggested the word 'only' be removed from the question and if so the answer given is correct.		lathe. There are 19 learners who can only operate a centre lathe so the number who can operate a centre lathe but not a milling machine must be $19 - 8 = 11$. Award one mark for each correct number.
8	(b)	(ii)	Number in class = $11 + 8 + 5 + 7 = 31$ 47 if 'only' is not removed.	[1]	
			Total	[10]	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning
Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

© OCR 2017

