

Level 3 Certificate

Mathematics for Engineering

OCR Level 3 Certificate in Mathematics for Engineering H860/02

Paper 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk

Question	Answer	Marks
1 (a)	<p>Both tables show a final velocity of 15.59 m/s for the 2 m parachute. Since the object in the second table has travelled 200 m further than in the first table without an increase in velocity, it is reasonable to assume that 15.59 m/s is approximately the terminal velocity.</p> <p>The same argument cannot be applied to the 1 m and 1.5 m parachutes. However, the two final velocity values for the 1.5 m parachute are very close and it would be reasonable to conclude that the terminal velocity is very little more than 27.66 m/s.</p> <p>The terminal velocity for the 1 m parachute is inconclusive.</p>	2 3 [5]
(b)	<p>k can be deduced directly from $\frac{d^2x}{dt^2} = g - kS \frac{dx}{dt}$ when $\frac{d^2x}{dt^2} = 0$ and $\frac{dx}{dt}$ is known.</p> <p>Using the fact that the 2 m parachute provides a terminal velocity of 15.59 m/s</p> $g - k \times \pi \times 15.59 = 0$ $k = g/(\pi \times 15.59) = 9.8/(3.14159 \times 15.59) = 0.2$	2 2 [4]
		Total [9]

Question	Answer	Marks
2 (a) (i)	$\frac{d^2h}{dt^2} = -g$ (acceleration)	1
	(ii) $\frac{dh}{dt} = -gt + V_0$ where V_0 is the initial upward velocity	2
	(iii) $h = \frac{-gt^2}{2} + V_0 t + A_0$ where A_0 is the initial height ($= 0$)	2 [5]
(b)	<p>Maximum height is reached when $\frac{dh}{dt} = 0$</p> $-gt + V_0 = 0 \quad t = \frac{V_0}{g}$ <p>Maximum height = 200</p> $\frac{-gt^2}{2} + V_0 t = 200$ $\frac{-g}{2} \left(\frac{V_0}{g} \right)^2 + V_0 \left(\frac{V_0}{g} \right) = 200$ $-\frac{V_0^2}{2} + V_0^2 = 200g$ $V_0^2 = 400g$ $V_0 = \sqrt{400g} = 62.61 \text{ m s}^{-1}$	1 1 1 1 1 1 1 [5]

		Alternative acceptable solution (final velocity) ² = (initial velocity) ² - 2gs 0 = $u^2 - 2gs$ $u = \sqrt{2gs} = \sqrt{2 \times 9.8 \times 200} = 62.61 \text{ m s}^{-1}$	
			Total [10]

Question	Answer	Marks
3 (a) (i)	$\frac{d^2x}{dt^2}$ is acceleration i.e. the rate of change of velocity v wrt t i.e. $\frac{d^2x}{dt^2} = \frac{dv}{dt}$ $\frac{dx}{dt} = v$ velocity Replacing in $\frac{d^2x}{dt^2} = g - kS \frac{dx}{dt}$ gives $\frac{dv}{dt} = g - kSv$	1 1 1 [2]
	(ii) Using integrating factor method : $\frac{dv}{dt} + Pv = Q$ $P = kS$ $Q = g$ $IFv = \int Q \cdot IF dt$ $IF = e^{\int P dt} = e^{\int kS dt} = e^{kSt}$ $e^{kSt} v = \int g e^{kSt} dt$ $e^{kSt} v = \frac{g}{kS} e^{kSt} + A$ $v = \frac{g}{kS} + Ae^{-kSt}$ when $t = 0, v = 0 \Rightarrow A = -\frac{g}{kS}$ $v = \frac{g}{kS} - \frac{g}{kS} e^{-kSt}$ $v = \frac{g}{kS} (1 - e^{-kSt})$ Alternative acceptable solution using separation of variables $\frac{dv}{dt} = g - ksv$ $\int \frac{dv}{g - ksv} = \int dt$ $-\frac{1}{ks} \ln(g - ksv) = t + C$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [6]

		$\ln(g - ksv) = -kst + B$ $g - ksv = Ae^{-kst}$ $ksv = g - Ae^{-kst}$ $v = \frac{g}{sk} - De^{-kst}$ when $t = 0, v = 0 \Rightarrow D = \frac{g}{kS}$ $v = \frac{g}{kS}(1 - e^{-kSt})$	
(b)		$v = \frac{g}{kS}(1 - e^{-kSt})$ $x = \int v dt$ $x = \int \frac{g}{kS}(1 - e^{-kSt}) dt$ $x = \frac{g}{kS} \left(t + \frac{e^{-kSt}}{kS} \right) + B$ When $t = 0, x = 0$ $0 = \frac{g}{kS} \left(\frac{1}{kS} \right) + B \Rightarrow B = -\frac{g}{(kS)^2}$ $x = \frac{g}{kS} \left(t + \frac{e^{-kSt}}{kS} \right) - \frac{g}{(kS)^2}$ $x = \frac{g}{kS} \left(t + \frac{1}{kS} (e^{-kSt} - 1) \right)$	1 1 1 1 1 1 [4]
Total			[12]

Question		Answer	Marks
4	(a)	Using $v = \frac{g}{kS}(1 - e^{-kSt})$ Terminal velocity reached as $t \rightarrow \infty$ i.e. as $e^{-kSt} \rightarrow 0$ $v = \frac{g}{kS}$ Also allow use of $\frac{dv}{dt} = g - kSv$ from Q3a i.e. $0 = g - ksv$	1 [1]
	(b) (i)	$S = \frac{g}{5k} = \pi \left(\frac{d}{2} \right)^2$ $d = 2 \sqrt{\frac{g}{5k\pi}}$ $d = 2 \sqrt{\frac{9.8}{5 * 0.25\pi}} = 3.16 \text{ m}$	3 [3]

	(ii)	Half terminal velocity	
		$\frac{g}{Sk} (1 - e^{-kSt}) = 2.5$	1
		$(1 - e^{-kSt}) = \frac{2.5Sk}{g}$	1
		$e^{-kSt} = 1 - \frac{2.5kS}{g}$	1
		$-kSt = \ln\left(1 - \frac{2.5kS}{g}\right)$	1
		$t = \frac{-\ln\left(1 - \frac{2.5kS}{g}\right)}{kS}$	1
		When $k = 0.25$,	
		$S = \pi \left(\frac{d}{2}\right)^2 = 7.84$	1
		$t = 0.353647 \text{ s}$	[5]
		Total	[9]

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998

Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553