

Mark Scheme (Results)

January 2018

Pearson Edexcel International GCSE In Chemistry (4CH0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com/contactus. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code 4CH0_1C_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	Si		1
(b)	N		1
(c)	0	ACCEPT 8	1
(d)	A (1)		1
(e)	D (7)		1

Question number		Answer		Notes	Marks
2 (a)					
	Change	Starting state	Finishing state		
	ice to water				
	solid iodine to iodine vapour	Z	Х	1 mark for each correct row	3
	molten iron to solid iron	Y	Z		
	ethene to (poly)ethene	Х	Z		
(b)	D (sublimation)			1

Question number	Answer	Notes	Marks
3 (a)	M1 (crystals) - get smaller	ACCEPT disappear IGNORE dissolve IGNORE reference to (incorrect) colours/loses colour IGNORE mass decreases	2
	M2 (water) - turns (from colourless to) purple	ALLOW pink IGNORE goes cloudy ALLOW (water) turns to colour of crystals REJECT other incorrect observations, e.g. fizzing, crystals change colour, only once in (a)	
(b)	C diffusion		1
(c)(i)	(water would change colour/go purple) more quickly	ALLOW change (in appearance) /it happens more quickly ALLOW (dissolves) more quickly IGNORE cloudy/incorrect colour ALLOW references to darker purple/colour with hot water ALLOW references to faster reaction IGNORE references to collisions	1
(c)(ii)	M1 particles/molecules/ions/they have more (kinetic) energy/are moving faster (in hot water)	ALLOW reverse argument in cold water	2
		If change is slower in (i) then ALLOW particles/molecules/ions have less (kinetic) energy/are moving slower	
	M2 particles/molecules/ions/they diffuse/spread more quickly	ALLOW particles/molecules/ions/they dissolve more quickly ALLOW more particles dissolve ALLOW references to more frequent collisions between water molecules and crystals	

Question number	Answer	Notes	Marks
4 (a)	140 130 120 110 100 90 80 70 60 50 40 30 10 20 30 40 50 60 70	M1 and M2 all points plotted correctly to nearest gridline Penalise 1 mark for each point plotted incorrectly M3 suitable curve of best fit drawn for points plotted Do not consider any extrapolation of curve for M3	3
(b)	M1 curve correctly extrapolated to cut y axis (at 10 °C) M2 correct reading to nearest gridline from curve drawn	typical answer in range 32-33	2
(c)	 M1 correct reading to nearest gridline at 35 °C from curve drawn M2 value from M1 divided by 2 and correctly evaluated 	typical answer = 58	2

Total 7 marks

Question number	Answer	Notes	Marks
5 (a)	M1 heated M2 (until it is) vaporised	ALLOW boiled ALLOW raised to high temperature / temperature above 350 °C IGNORE distilled IGNORE references to pressure/catalyst ACCEPT made into a vapour/gas ALLOW evaporates If definite implication/use of cracking allow max 1	2
(b)	increases	ACCEPT decreases from bottom to top ALLOW gets hotter from top to bottom ALLOW hotter at bottom/cooler at top IGNORE references to boiling points IGNORE stated temperature values	1
(c)	M1 (gasoline) fuel for cars / petrol M2 (bitumen) (making) roads / (surfacing) roofs		2
(d)	bitumen		1
(e)	boiling point	IGNORE melting point IGNORE density IGNORE references to chain length/IMF	1

Question number	Answer	Notes	Marks
6 (a)	M1 (X) - chlorine	ACCEPT Cl ₂ IGNORE Cl	3
	M2 (Y) - potassium hydroxide	ACCEPT KOH	
	M3 (Z) - hydrochloric (acid)	ACCEPT HCl	
		In each case, if both name and formula given then mark name only	
(b) (i)	2Na + I ₂ → 2NaI	ACCEPT multiples and halves IGNORE state symbols	1
		correct case/subscript required	
(ii)	M1 add (dilute) nitric acid	ACCEPT HNO ₃	3
, ,		If no acid then M2 and M3 can be scored If incorrect acid or other incorrect reagent then M2 and M3 can be scored	
		ACCEPT AgNO ₃	
		If more than two reagents added penalise extra incorrect reagent(s)	
	M2 add (aqueous) silver nitrate	ACCEPT usual alternatives to precipitate	
		IGNORE cloudy IGNORE qualifiers such as pale/light/dark REJECT other observations e.g. fizzing	
	M3 yellow precipitate (forms)	M3 DEP on addition of silver nitrate/ AgNO ₃ IGNORE identity of precipitate	
		If use more reactive halogen (solution) ALLOW M1 add chlorine/bromine (solution) M3 turns (reddish) brown	
		OR M1 add chlorine/bromine (solution) M2 (followed by) starch M3 turns blue/black	
		IGNORE references to electrolysis	

Question number		A	Inswer		Notes	Marks
7 (a)	M1	(Cu) <u>34.60</u> 63.5	(Fe) <u>30.52</u> 56	(S) <u>34.88</u> 32	Division by atomic numbers or other inappropriate numbers scores 0/3 Fractions upside down scores 0/3 ACCEPT use of 64 for Cu	3
	M2	0.545	0.545	1.09	With 63.5 = (0.54488 0.545 1.09) With 64 = 0.5406 0.545 1.09	
					ALLOW any number of sig figs greater than one, rounded correctly	
					ALLOW ECF from minor error in M1	
					ALLOW M3 to score from 0.5:0.5:1 or other incorrect rounding in M2	
	M3 (the smalle	st		
		1	1	2		
	OR					
		Calculation 5/184	of Mr of C	CuFeS ₂ =		
	<u>each</u>	•	for percer e.g. Cu = 6	-		
	equa		to show th Cu, 30.52°			

	Quest numb		Answer	Notes	Marks
7	(b)	(i)	(sulfur) gained oxygen	ALLOW combined with oxygen ALLOW had oxygen added ALLOW gained O/O ₂ IGNORE formed sulfur dioxide/SO ₂ IGNORE reacted/mixed with oxygen ACCEPT oxidation state/number increases ACCEPT oxidation state/number changes from -2 to (+)4 IGNORE references to electron loss	1
		(ii)	$CuS + O_2 \rightarrow Cu + SO_2$	ACCEPT multiples and halves	1
7	(c)	(i)	hydrogen (ion) / H ⁺	ACCEPT hydronium (ion) / H ₃ O ⁺ If both name and formula given, both must be correct	1
		(ii)	(blue/purple/neutral litmus (paper)) turns/goes red		1
		(iii)	M1 effervescence/bubbles/fizzing	ACCEPT gas given off/formed/produced IGNORE name of gas IGNORE hydrogen/H ₂	2
			M2 magnesium/solid/ribbon disappears	ACCEPT magnesium/solid/ribbon dissolves ACCEPT magnesium/ solid/ribbon gets smaller IGNORE mass decreases IGNORE reference to movement	
				IGNORE references to temperature change/heat evolved/exothermic	
				REJECT extra incorrect observations e.g. white flame	

Question number	Answer	Notes	Marks
8 (a)			
	Temperature after in °C 32.5	M1 32.5	2
	Temperature before in °C (27.0)	M2 5.5	
	Change in temperature in °C (+) 5.5		
		ALLOW M2 ECF from M1	
(b) (i)	M1 EITHER		3
	size/surface area (of metal)	IGNORE volume of metal	
	OR		
	amount / number of moles (of metal)	IGNORE mass of metal	
	AND Any TWO from		
	M2 concentration of acid	ALLOW amount of acid	
	M3 volume of acid	ALLOW amount of acid	
	M4 rate/time of stirring	ALLOW starting temperature	
(ii)	M5 external/room temperature the more reactive the metal the greater the temperature rise	ACCEPT reverse argument	1
	S. Sate. the temperature rise	IGNORE reactivity is proportional to temperature rise	
(iii)	no reaction (takes place)/ gold does not react (with hydrochloric acid)	IGNORE gold is (too) unreactive/not reactive enough	1

Question number	Answer	Notes	Marks
9 (a)	M1 strontium carbonate M2 strontium hydrogencarbonate	ACCEPT correct formulae	2
(b) (i)	M2 Strontium Hydrogenical bonate		2
	Any TWO from: M1 (could be) caesium (compound) as		
	also gives a blue flame M2 (could be) a carbonate as also turns		
	yellow with methyl orange M3 (could be) hydrogencarbonate as		
	also turns yellow with methyl orange	In M1 M2 M3 REJECT if incorrect reason given	
		ALLOW 1 mark if two correct ions identified without reasons e.g. could be caesium and could be a carbonate	
		ALLOW 1 mark if two different correct observations given without naming the ions e.g. other (substances/ions) give blue flame and turn yellow with methyl orange	
(ii)	add hydrochloric acid	ALLOW HCI	1
		REJECT extra tests/reagents	

Question number	Answer	Notes	Marks
9 (c)	M1 add magnesium chloride (solution)	REJECT extra reagents e.g. HCl	3
	M2 carbonate ions give a (white) precipitate		
	M3 no change with hydrogencarbonate ions	ALLOW no (white) precipitate forms	
		M2 and M3 DEP on mention of magnesium chloride in M1	

Question number			Answer	Notes	Marks
10	(a)		pipette / burette		1
	(b)	(i)	ANY TWO from		1
			M1 did not stir the mixture	ALLOW less/slower stirring	1
			M2 added less than 5 cm ³ (extra) of acid	ALLOW added less than 20cm³ (total) acid ALLOW not enough acid added	
			M3 did not wait until highest temperature reached	ALLOW read thermometer too soon	
		(ii)	Any value between 32 and 34 (°C) inclusive	ALLOW range between 32 and 34 IGNORE units	1
	(c)		M1 $\Delta T = 19.0 (^{\circ}\text{C})$	ALLOW {35.0 — 16.0} if not evaluated	1
			M2 m = 50.0 (g)	ALLOW {25.0 + 25.0(0)} if not evaluated	1
			M3 Q = 3970 (J)	ACCEPT 3971 ACCEPT 4000 IGNORE any sign M3 ECF from M1 and for use of m = 25 ALLOW 3.971/3.97/4.(0)kJ Correct answer with no working scores 3 marks	1

Question number	Answer	Notes	Marks
11 (a) (i)	delocalised electrons can flow (through structure when voltage/pd is applied)	ALLOW sea of electrons IGNORE free electrons ACCEPT can move ACCEPT are mobile IGNORE carry charge REJECT any reference to ions moving	1
(ii)	M1 the layers of (cat)ions	ALLOW rows/sheets/OWTTE for layers ALLOW atoms for ions REJECT molecules/protons/electrons/nuclei IGNORE particles	2
	M2 can slide/slip over one another	ALLOW OWTTE e.g. roll/flow M2 DEP on mention of layers or equivalent OR mention of (cat)ions/atom Do not award M2 if molecules/protons/electrons/nuclei in place of (cat)ions/atoms If reference to ionic bonding / covalent bonding / molecules / intermolecular forces, M1 and M2 cannot be scored	
(b)	TiCl ₄		
	M1 simple molecular (structure) M2 weak intermolecular forces (of attraction)/weak forces (of attraction) between molecules	ALLOW simple covalent ACCEPT weak dispersion forces/van der Waals forces/temporary dipole-induced dipole forces ALLOW bonds for forces	5
	TiO ₂		
	M3 giant (covalent structure)		
	M4 strong (covalent) bonds	REJECT if mention of IMF/ions	
	M5 Little/less energy required to overcome the forces (in TiCl ₄)	REJECT any reference to covalent bonds broken in TiCl ₄ ALLOW intermolecular bonds /bonds between molecules	
	AND	IGNORE molecules more easily separated / easier to break forces	
	large amount of/more energy required to break the (covalent) bonds (in TiO ₂)	REJECT any reference to IMF broken	

	uestic iumbe		Answer	Notes	Marks
11	(c)	(i)	$TiO_2 + C + 2Cl_2 \rightarrow TiCl_4 + CO_2$	ACCEPT halves and multiples	2
			M1 all formulae correct		
			M2 balanced correctly	M2 DEP on M1	
		(ii)	TiCl ₄ + 2Mg → Ti + 2MgCl ₂	ACCEPT halves and multiples	1

Total 11 marks

Question number	Answer	Notes	Marks
12 (a) (i)	low AND because (forward) reaction is exothermic / (forward) reaction releases heat (energy)	ACCEPT (equilibrium) shifts in the exothermic direction IGNORE ΔH is negative / = -91 ALLOW backwards/reverse reaction is endothermic	1
		IGNORE references to Le Chatelier's principle e.g. a decrease in temperature favours the reaction that produces heat/tries to decrease the temperature IGNORE references to rate of reaction	
(ii)	high AND because there are fewer moles/molecules (of gas) on the RHS/products side/methanol side	ACCEPT (equilibrium) shifts to side with fewer moles/molecules (of gas) ACCEPT there are 4 moles/molecules (of gas) on the LHS but only 2 mole/molecule (of gas) on the RHS ALLOW there are more moles/molecules (of gas) on the LHS	1
		IGNORE references to Le Chatelier's principle e.g. an increase in pressure favours the reaction that tries to decrease in pressure	
(b)	(the catalyst/it) increases both rates equally		1
(c)	enthalpy $CO + 2H_2$ ΔH CH_3OH		
(i)	M1 profile curve completed with CH₃OH/products below reactants		2
	M2 vertical line with arrow pointing downwards labelled Δ <i>H</i> / enthalpy change / –91(kJ/mol)	ALLOW double headed arrow line ALLOW vertical line with no arrowhead REJECT single arrow head pointing up	
(ii)	vertical arrow line drawn from level of reactants to top of curve and labelled <i>E</i>	ACCEPT double headed arrow line	1
(iii)	no effect	REJECT arrow pointing downwards	1

Question number	Answer	Notes	Marks
13 (a)	M1 n(CaCO ₃) = 2.0 × 10 ⁵ OR 200 000 (mol)	ACCEPT calculations in mega moles	1
	M2 $m(CaO) = 11.2$	M2 ECF from M1	1
	M3 tonnes	ACCEPT 1.12 x 10 ⁷ g ACCEPT 1.12 x 10 ⁴ kg	1
	OR	ACCELLATIONS	
	M1 100 → 56		
	M2 20 → 11.2	M2 ECF from M1	
	M3 tonnes	ACCEPT 1.12 x 10 ⁷ g ACCEPT 1.12 x 10 ⁴ kg	
		M3 DEP M2 being awarded	
		Correct answer including units with no working scores 3 marks	
(b)	calcium hydroxide		1
(c) (i)	M1 0.025(0) × 0.5(00)		1
	M2 0.0125 (mol)	ACCEPT 12.5 for 1 mark	1
(ii)	M1 n[Ca(OH) ₂] = 0.0125 ÷ 2 OR 0.00625 (mol)		1
	M2 mass of $Ca(OH)_2 = 0.463$ (g)	ACCEPT 0.4625 and 0.46	1
	OR		
	M1 answer to M2 from (i) divided by 2		
	M2 M1 × 74 evaluated correctly	ALLOW 1 mark for 0.925 ALLOW 1 mark for 1.85	
(d)	M1 Ca(OH) ₂ / slaked lime / limewater /the solution reacts with CO ₂	ACCEPT correct chemical or word equation REJECT any other gas	1
	M2 to form solid calcium carbonate/CaCO ₃	ACCEPT to form insoluble calcium carbonate/CaCO ₃	1
		ALLOW to form the (white) precipitate calcium carbonate/ $CaCO_3$ ACCEPT any indication in an equation that the $CaCO_3$ is formed as a solid e.g. state symbol	

Question number	Answer	Notes	Marks
14 (a)	B (Q and U)		1
(b)	C (S and T)		1
(c)	D (V)		1
(d)	A (R and V)		1
(e) (i)	UV (light/radiation)	IGNORE any reference to high temperature IGNORE any reference to a catalyst	1
(ii)	H H H H	ACCEPT Br in any position ACCEPT multiple substitutions	1

Question number	Answer	Notes	Marks
15 (a)	Haber (process)		1
(b)	M1 (gas A) - nitrogen/N ₂ M2 (gas B) - hydrogen/H ₂	If name and formula given both must be correct	1
		If both answers correct but in wrong order award 1 mark	
(c)	to liquefy the ammonia	IGNORE to condense the ammonia ALLOW to separate the ammonia from the unreacted gases/nitrogen and hydrogen	1
(d)	iron		1
(e)	Any two from:		
	M1 saves raw materials/resources	ALLOW stops raw materials/resources being wasted	2
	M2 uses less energy	ACCEPT saves energy	
	M3 to produce more ammonia / to improve yield (of ammonia)	ALLOW so recycled gases/nitrogen and hydrogen/they can be reacted again	
		IGNORE references to saves money	
(f) (i)	M1 350 (°C)	ACCEPT low temperature	1
	M2 400 (atm)	ACCEPT high pressure	1
		If numerical answers given units or indication of which is temp/pressure required	
(ii)	40 (%)	ACCEPT range 40-41 (%)	1
(iii)	the reaction does not reach equilibrium		1

Total 11 marks

	Question	Answer	Notes	Marke
	number	Answer	Notes	Marks
16	(a)	to make sure that all the water has been removed (from the crystals)		1
	(b)(i)	3.80 (g)	ACCEPT 3.8	1
	(ii)	1.80 (g)	ACCEPT 1.8	1
	(iii)	M1 $n(\text{FeSO}_4) = 0.025 \text{ (mol)}$		1
		M2 $n(H_2O) = 0.10$		1
		M3 $x = 4$	ALLOW ECF from M1 and M2 Answer must be given to nearest whole number	1
		OR	Humber	
		M1 $(18 \times 152) = (1.80 \div 3.80)$		
		M2 $x = (152 \times 1.80) \div (18 \times 3.80)$		
		M3 $x = 4$		
			(iii) marked ECF from (b)(i) and (b)(ii)	
			correct answer with no working scores 3 marks	
	(c)	M1 (reaction) is exothermic/gives out heat (energy)	ACCEPT gives out thermal energy	1
		M2 hydrated copper(II) sulfate formed	ACCEPT CuSO ₄ .5H ₂ O ALLOW now contains water of crystallisation	1
			IGNORE copper(II) sulfate crystals are formed	

