

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International GCSE in Chemistry (4CH0) Paper 1CR

Pearson Edexcel International in Science (Double Award) (4SC0) Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code 4CH0_1CR_1706_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	D (Br ₂)		1
	The only correct answer is D		
	A is not correct because Br is the symbol for bromine		
	B is not correct because the 2 is a superscript not a subscript		
	C is not correct because the 2 is not a subscript		
(b) (i)	B (diffusion)		1
	The only correct answer is B		
	A is not correct because condensation is the change of state from a gas to liquid		
	C is not correct because evaporation is change of state from a liquid to gas		
	D is not correct because the change of state from sublimation is solid to gas		
(ii)		ALLOW particles evaporate	2

	 M1 the bromine/liquid evaporates / the particles escape (from the liquid) M2 (bromine fills the gas jar because) the (gas) particles move freely/randomly/constantly 	ALLOW (gas) particles spread ALLOW particles move from a high concentration to low (concentration) IGNORE references to diffusion ACCEPT molecules for particles REJECT atoms once only	
(c)	C The only correct answer is C A is not correct because NH ₃ gas diffuses faster HCl gas B is not correct because NH ₃ gas diffuses faster HCl gas D is not correct because the position indicated is too close to the right hand end of the tube	Totol	1
		lotal	5

Question number	A	nswer	Notes	Marks
2 (a)	M1 oxygen		ACCEPT O ₂ IGNORE O IGNORE air	2
	M2 water (vapour))	ACCEPT moisture ACCEPT H ₂ O	
			If both name and formula given, mark name only	
(b)				3
	Item	Method		
	bicycle chain	olling		
	l	galvanising		
	car body	painting /		
		galvanising		
(c)	D (zinc)			1
	The only correct a	answer is D		
	A is not correct bec metal used to galva	ause zinc is the only anise iron		
	B is not correct bec metal used to galva	ause zinc is the only anise iron		
	C is not correct bec metal used to galva	ause zinc is the only anise iron		
			Total	6

Question number	A	nswer	Notes	Marks
3 (a)				4
	Separation	Method		
	to obtain sand	filtration		
	from a mixture of			
	sand and water			
	to separate crude	fractional		
	oil into its	distillation		
	components			
	to obtain pure	simple distillation		
	water from salt			
	water			
	to obtain ethanol	fractional		
	from a mixture of	distillation		
	ethanol and water			
(b) (i)	M1 (add to) appydra	we (white conner(II)		2
(0) (1)		bus/white copper(11)		Z
	Sullate			
	M2 turns blue		ACCEPT turns copper(II) sulfate from	
			white to blue for 2 marks	
	OR			
	•			
	M1 add to cobalt(II)	chloride paper /	ACCEPT blue cobalt(II) chloride	
	cobalt chloride p	aper	ALLOW anhydrous cobalt(II) chloride	
	M2 turns pink		ACCEPT turns cobalt(II) chloride from	
			blue to pink for 2 marks	
			M2 DEP on M1 or near miss	
			e.g. just copper(II) sulfate	
			IGNORE any reference to testing with	
			Indicators	

Question number		Answer	Notes	Marks
3 (b) (ii)	M1 mea poir	asure/determine/test its boiling nt	ACCEPT boil it / heat until it boils	2
	M2 100	0°C	it boils at 100 °C	
			ALLOW its boiling point is 100 °C for 1 mark	
			ALLOW heat it and it boils at 100 °C for 2 marks	
	OR			
	M1 mea	asure/determine/test its freezing	ACCEPT freeze it / cool until it freezes	
	pon		it freezes at 0 °C	
	M2 0°C	2	ALLOW its freezing point is 0 °C for 1 mark	
			ALLOW cool it and it freezes at 0 °C for 2 marks	
	OR			
	M1 mea	asure/determine/test its density	ALLOW its density is 1 g/cm^3 for 1 mark	
	M2 1g/	′cm³	M2 DEP on M1 throughout	
			Total	8

Question number	Answer	Notes	Marks
4 (a) (i)	B (the number of protons in an atom)		1
	The only correct answer is B		
	A is not correct because atomic number is not the number of neutrons in an atom		
	C is not correct because atomic number is not the number of protons plus the number of electrons in an atom		
	D is not correct because atomic number is not the number of protons plus the number of neutrons in an atom		
(ii)	C (electrons in the outer shell)		1
	The only correct answer is C		
	A is not correct because the number of protons does not determine chemical properties		
	B is not correct because the number of neutrons does not determine chemical properties		
	D is not correct because the number of protons and neutrons does not determine chemical properties		

(b)									
		Li	Be	В	с	N	F	One mark for each correct row	3
	melting point				high	low	low		
	structure	giant			giant	molecular			
	acid-base character of the oxide	basic			acidic	acidic	acidic		
								Total	5

Question number	Answer	Notes	Marks
5 (a) (i)	add acid before magnesium	ORA	1
(ii)	a burette has a better resolution (than a measuring cylinder)	ALLOW greater accuracy (of data) ALLOW greater precision (of data)	1
(b)	Total volume of gis collected in cm ³		4
		Deduct one mark for each incorrectly plotted point Missing (0,0) loses 1 mark only	
	M3 suitable curve of best fit drawn for acid X		
	M4 suitable curve of best fit drawn for acid Y		

Question number	Answer	Notes	Marks
5 (c)	M1 Y (has the greater concentration)		2
	M2 (because) the curve (for acid Y) has a steeper slope/greater gradient (showing that the reaction is faster) OR	M1 DEP M2	
	(because) it produces the larger volume of gas/more gas in the same time	OWTTE	
		Mark CSQ on candidate's labelling of their curves If no labelling assume steeper curve is acid Y	
(d)	M1 vertical line drawn to touch curve at t = 70 s OR horizontal line drawn to touch curve at t = 70 s		2
	M2 value read correctly from candidate's graph to nearest gridline	Expected value in range 16-17 (cm ³)	
(e)	M1 17 (cm ³)	ACCEPT value read correctly from candidate's graph to nearest gridline	2
	M2 (17 ÷30) = 0.57 (cm ³ /s)	ACCEPT any number of sig figs e.g. 0.6, 0.567, 0.56 recurring	
		Mark M2 CSQ on M1	
		Total	12

Question number	Answer	Notes	Marks
6 (a) (i)	<pre></pre>		3
	M1 minimum of 5 circles in regular pattern in at least two rows	IGNORE different numbers of ions and electrons	
	M2 circle(s) labelled cation(s)/metal ion(s)/positive ion(s)/atom(s)	+ drawn in circle is sufficient IGNORE particle	
	M3 spread of electrons in between circles AND labelled	e or e⁻ is sufficient	
(ii)	M1 delocalised electrons	ACCEPT sea of electrons IGNORE free electrons	2
	M2 are able to flow (in an electric field)	ACCEPT are able to move / are mobile	
		IGNORE references to carrying a charge/current	
		M2 DEP on mention of electrons	
		Any mention of ions/atoms/nuclei/protons moving scores 0/2	

Question number	Answer	Notes	Marks
6 (a) (iii)	M1 strong (electrostatic) forces (of attraction) between cations/metal ions and (delocalised) electrons	ACCEPT strong forces (of attraction) between nuclei of atoms and (delocalised) electrons	2
		ACCEPT strong metallic bonding / metallic bonds Not just strong bonds	
	M2 large amount of (thermal/heat) energy needed to overcome the forces	Not just heat Not just more energy	
		M2 DEP on M1 or near miss, e.g. strong bonds	
		Any mention of ionic bonds or covalent bonds or intermolecular forces being broken or overcome scores 0/2	

Question number	Answer	Notes	Marks
6 (b)	M1 (Cu ²⁺) blue precipitate	IGNORE shades	2
	M2 (Fe ²⁺) green precipitate	REJECT any other colours	
		Both colours correct but no mention of precipitates score 1/2	
(c) (i)	it is unreactive / it is not very reactive / it is low in the	ACCEPT it is not as reactive as iron/it is below	1
	reactivity series	fron in the reactivity series IGNORE inert	
(ii)	$CO_2 + C \rightarrow 2CO / 2C + O_2 \rightarrow 2CO$	ACCEPT multiples and halves	1
(iii)	M1 iron / Fe		2
	M2 (because) it loses oxygen / because oxygen has been removed	ALLOW IT loses O IGNORE gains electrons	
		ALLOW the iron(III) ion / Fe ³⁺ (is reduced	
	M2 DEP on M1	because it) has gained electrons for 1 mark ALLOW Iron(III) oxide/Fe ₂ O ₂ /Fe ³⁺ (is reduced	
		because it) has lost oxygen for 1 mark	
(iv)	M1 calcium carbonate decomposes/forms/	ACCEPT limestone for calcium carbonate	2
	changes into calcium oxide		
	M2 calcium oxide reacts with silicon dioxide/silica	ACCEPT correct chemical equations	
		IGNORE sand	
		ALLOW calcium carbonate reacts with silicon	
		aloxide for 1 mark	
		Total	15

Question number	Answer	Notes	Marks
7 (a) (i)	silver does not react with (dilute sulfuric) acid	ACCEPT silver is below hydrogen in the reactivity series IGNORE silver is unreactive / silver has a low reactivity / silver is inert	1
(ii)	D (zinc and sulfuric acid)		1
	The only correct answer is D		
	A is not correct because copper does not react with dilute sulfuric acid		
	B is not correct because gold does not react with dilute hydrochloric acid		
	C is not correct because the reaction between potassium and dilute hydrochloric acid is explosive and therefore not safe		
(b) (i)	Experiment 3 because the volume collected is much lower than / very different to the other three	ACCEPT any answer that suggests the result/value in experiment 3 is much lower/much different to the other three e.g. it is much lower than the other three or there is a large difference between it and the other three	1

(ii)	M1 chooses 64, 67 and 63	ACCEPT 194	2
	M2 65 (cm ³)	ACCEPT any number of sig figs except 1 eg 64.7 / 64.67 / 64.667 / 64.6 recurring	
		Correct answer with no working scores 2	
		ALLOW 1 mark for correct calculation using all four volumes (58.5 / 59)	
(iii)	to increase the validity/reliability (of the	ACCEPT to check for anomalous results	1
	measurements/uala)	IGNORE references to increased accuracy	
		Total	6

Question number	Answer	Notes	Marks
8 (a)	M1 (54.4 ÷ 127) = 0.428 AND	ACCEPT any number of sig figs except 1, but allow use of 0.4 in calculation of ratio in M2	2
	$(45.6 \div 35.5) = 1.28$		
	M2 Divide by the smaller number to obtain 1:3 ratio OR 0.428:1.28 = 1:3	ALLOW answers to M1 given as fractions only if it is clear that division by smaller has taken place to obtain a ratio	
(b) (i)	M1 rate of forward reaction = rate of backward reaction	IGNORE forward reaction = backward reaction	2
	M2 amounts/concentrations/masses of reactants (and products) remain constant / constant macroscopic properties	IGNORE amounts/concentrations of reactants and products are equal	
(ii)	M1 (liquid) (contains) ions that can flow/move/are mobile	IGNORE references to carry charge REJECT any reference to electrons moving	2
	M2 (solid) (does not contain any) charged particles that can flow/move/are mobile	ACCEPT molecules are not charged/are neutral ACCEPT no electrons that can flow/move/are mobile ACCEPT no delocalised electrons ACCEPT no sea of electrons IGNORE free electrons REJECT any suggestion that the solid is ionic or contains ions	
		Total	6

Question number	Answer	Notes	Marks
9 (a) (i)	halogens are poisonous/toxic	ACCEPT any named halogen IGNORE harmful/dangerous/irritant IGNORE (named) products are toxic	1
(ii)	M1 chlorine most reactive AND iodine least reactiveOR	IGNORE reactivity of the halogens decreases down the group	2
	chlorine > bromine > iodine		
	M2 chlorine glows most brightly / glows very brightly	IGNORE references to heat given out	
	AND		
	iodine glows least brightly / glows dimly		
(iii)	M1 the statement/student is incorrect	ACCEPT the reactivity can be found	2
	M2 because vapours/gases were used (so the physical states at room temperature are irrelevant)	M1 DEP on M2	

Question number	Answer	Notes	Marks
9 (b) (i)	$H_2 + Br_2 \rightarrow 2HBr$	ACCEPT multiples and halves	1
(ii)			2
	XXX		
	M1 bonding pair of electrons		
	M2 non-bonding pairs correct	M2 DEP on M1	
		ALLOW any combination of dots and crosses	
		If overlapping/touching circles used both electrons must be within the overlapping/touching area	
		IGNORE inner electrons on chlorine even if incorrect	
(iii)	hydrochloric acid		1
		Total	9

Question number	Answer	Notes	Marks
10 (a) (i)	M1 (magnesium ribbon) shiny / silvery	IGNORE grey	2
	M2 (magnesium oxide) white (powder/solid/smoke/ash)	IGNORE grey	
(ii)	(lift the lid) to allow oxygen into the crucible	ACCEPT air ACCEPT to allow magnesium to react with <u>oxygen</u>	2
	(replaces the lid) minimise the loss of magnesium oxide/product	ACCEPT smoke for magnesium oxide ALLOW prevent the loss of magnesium oxide, etc	
(b)	M1 $n[Mg] = 0.6 \div 24$ OR 0.025 (mol)		
	M2 mass of $O_2 = 0.4$ (g)		
	OR (M1 \div 2) × 32 evaluated correctly		
	Alternative method		
	M1 48 (g) require 32 (g)		2
	M2 0.6 (g) require 0.4 (g)		
(c)	$3Mg + N_2 \rightarrow Mg_3N_2$	ACCEPT multiples and halves	1
		Total	7

Question number		Answer	Notes	Marks
11	(a) (i)	D (C _n H _{2n+2})		1
		The only correct answer is D		
		A is not correct because C_nH_n is not the general formula for the alkanes		
		B is not correct because C_nH_{2n-2} is not the general formula for the alkanes		
		C is not correct because C_nH_{2n} is not the general formula for the alkanes		
	(ii)	C (C _n H _{2n})		1
		The only correct answer is C		
		A is not correct because C_nH_n is not the general formula for the cycloalkanes		
		B is not correct because C_nH_{2n-2} is not the general formula for the cycloalkanes		
		D is not correct because C_nH_{2n} is not the general formula for the cycloalkanes		

(iii)	Any two from:		2
	M1 similar/same chemical properties	ALLOW they all react in the same way/in a similar way	
	M2 graded physical properties / trend in physical properties	ACCEPT description of a graded physical property e.g. boiling increases as number of carbon atoms increases IGNORE different physical properties	
	M3 same functional group		
	M4 each member differs (from the previous member) by CH_2		

Question number	Answer	Notes	Marks
11 (b) (i)	(the molecule) contains only single bonds	ACCEPT contains no (carbon-carbon) double bonds/multiple bonds IGNORE references to no more atoms can be added, or contains the maximum number of hydrogen atoms	1
(ii)	H H H H H C C H H H	IGNORE bond angles	1
(iii)	н н н_с_с_н н_с_с_н н н	IGNORE bond angles	1
(c) (i)	ultraviolet/uv (light/radiation)	ALLOW sunlight IGNORE references to temperature or catalyst	1
	H Br C H-C-C-H H H	ACCEPT any number of bromine atoms substituted	1
		Total	9

Question number	Answer	Notes	Marks
12 (a)	M1 add water (and stir)	ALLOW dissolve in water	2
	M2 filter	ACCEPT description of filtration ACCEPT decant M2 DEP on M1	
		M2 not scored if any mention of evaporating the solution	
(b) (i)	M1 (cation) ammonium / NH_4^+	If both name and formula given, both must be correct	2
	M2 (anion) chloride / Cl ⁻	One mark if both correct but given in wrong order	
(ii)	ammonia / NH3	If both name and formula given, both must be correct	1
(c) (i)	M1 (anion) carbonate / CO ₃ ²⁻	ACCEPT hydrogencarbonate / HCO ₃ ⁻ If both name and formula given, both must be correct	2
	M2 (because) carbon dioxide/CO ₂ is given off (when hydrochloric acid/HCl is added)	ALLOW the gas is carbon dioxide	
(ii)	M1 (test) flame test	ACCEPT description of flame test	2
	M2 (result) brick-red (colour)	ACCEPT red / orange-red REJECT all other colours M2 DEP on M1 or near miss e.g. heat the solid but REJECT if solid is heated in a test tube, etc	
		Total	9

Question number	Answer	Notes	Marks
13 (a)	M1 use the <u>burette</u> to add the (sulfuric) acid (to the sodium hydroxide)		4
	M2 until there is a change in colour (of the indicator/methyl orange/solution)	If both initial and final colours are given both must be correct	
		ACCEPT orange/pink/red as the final colour	
		ACCEPT correct colours of any alternative indicator chosen e.g. (pink) to colourless for phenolphthalein	
		(blue) to purple/red/pink for litmus	
	M3 take initial and final readings of acid (and subtract to calculate the volume added)	REJECT Universal Indicator	
	Plus any one from:		
	M4 add acid dropwise (when near to the end point)		
	M5 swirl the solution (when near to the end point)		
	M6 repeat to obtain concordant results	ALLOW repeat to obtain accurate/reliable results	

Question number	Answer	Notes	Marks
13 (b) (i)	20(.0) °C		1
(ii)	17.5 cm ³		1
(iii)	10 (cm ³) AND 25 (cm ³)		1
		Total	7

Question number	Answer	Notes	Marks
14 (a)	B (changes from shiny to dull)		1
	The only correct answer is B		
	A is not correct because a freshly exposed surface of lithium does not bubble and fizz when in contact with air		
	C is not correct because a freshly exposed surface of lithium does not burst into flame when in contact with air		
	D is not correct because a freshly exposed surface of does change when in contact with air		
(b) (i)	burns with a pop/squeak OR	Must be reference to test and result	1
	use burning/lit spill to see if pops/squeaks	Reference to spill/match with no indication of flame is not	
	UR .	enough	
	use flame to see if pops/squeaks	REJECT reference to glowing spill/splint	
		IGNORE flame extinguished	
		'Squeaky pop test' alone is not sufficient	

(ii)	M1 lithium hydroxide/LiOH/hydroxide <u>ion(s)</u> /OH ⁻ (formed)	If both name and formula given both must be correct	2
	M2 (therefore) the <u>solution</u> is alkaline	ACCEPT pH is of the <u>solution</u> greater than 7 ALLOW <u>solution</u> is basic	

Question number	Answer				Notes	Marks	
14 (c)	Name of compound	Formula of compound	Formula of cation in compound	Formula of anion in compound			2
		Li ₂ O		CO ₃ ²	!		
14 (d) (i)							
11 (U) (I)	the reaction with caesium is more vigorous \checkmark			✓		2	
	the reaction with caesium produces a different gas						
	the reaction with caesium produces an acidic solution						
	the reaction with caesium produces a different compound			~			
	the reaction of caesium is endothermic						
(d) (ii)	2Cs + 2H ₂ O -	→ 2CsOH +	H ₂			ACCEPT multiples and halves	2
	M1 all formu	lae correct					
	M2 correctly balanced			M2 DEP on M1			

Question number		Answer	Notes	Marks
15 (a)	Μ1	0.02(00) x 0.2(00)		2
	М2	0.004(00) (mol)	ACCEPT 4 for 1 mark	
			Correct answer with no working scores 2	
(b)	M1	$0.004(00) \div 0.1(00)$		2
		OR		
		M2 from (a) ÷ 0.1(00)		
	M2	0.04(00) dm ³ / 40(.0) cm ³	Unit required	
		OR		
		M2 from (a) \div 0.1(00) correctly evaluated	Correct answer, using M2 from part (a), with no working scores 2	
(c)	M1	<i>n</i> (NaOH) = 0.03(00) x 0.2(00) OR 0.006(00) (mol)		2
	М2	mass of NaOH = 0.24 g		
		OR		
		M1 \times 40 correctly evaluated	Correct answer with no working scores 2	
			Total	6

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom