

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International GCSE Mathematics A (4MA0) Paper 3HR

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code UG042081 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - \circ M marks: method marks
 - A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
 - cao correct answer only
 - ft follow through
 - isw ignore subsequent working
 - SC special case
 - oe or equivalent (and appropriate)
 - dep dependent
 - indep independent
 - \circ eeoo each error or omission
 - \circ awrt –answer which rounds to

• No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Apart fr	Apart from questions 4, 14, 19b, 20c and 21 (where the mark scheme states otherwise) the correct answer, unless clearly obtained by an						
	y a correct method						
Question	Working	Answer	Mark	Notes			
1 (a)	$[2 \times 0] + 12 \times 1 + 15 \times 2 + 8 \times 3 + 2 \times 5 + 1 \times 8$			M1 (2×0) may be omitted;			
	(= 84) or			allow one error			
	[0] + 12 + 30 + 24 + 10 + 8						
			3				
	"84" ÷ 40			M1 dep			
				NB: Products do not have to be evaluated			
		2.1		A1			
(b)	14,100,			26 29 100 = 29 100			
	$\frac{1}{40}$ × 100 oe		2	$\frac{1}{40} \times 100 \text{ or } \frac{1}{40} \times 100 or$			
		35		A1			
				Total 5 marks			

2 (a)	360 ÷ 15 or			M1
	$\frac{(n-2)180}{n} = 180 - 15$ oe		2	
		24		A1
(b)	$3 \times 180/5$ or $(180 - 360 \div 5)$ (=108)			M1 must be no contradiction on diagram or in working
			_	
	360 – 3 × "108"		3	M1 dep
		36		A1
	Alternative for (b):			M1 must be no contradiction on diagram or in working
	360/5 (=72)			
	(180 – "72"×2)			M1 dep
		36		A1
				Total 5 marks

3	56.25 ÷ 15		3.75	2	M1 M1 for 56.25 or 15 A1 accept $\frac{15}{4}$, $3\frac{3}{4}$
					Total 2 marks
4	Eg. $7x + 3x = 1 + 2$		3	M1 for c on the of for corre a correct	correct rearrangement with x terms on one side and numbers ther or bet simplification of either x terms or numbers on one side in a equation eg. $10x - 2 = 1$; $7x = 3 - 3x$
	10x = 3	$\frac{3}{10}$ oe	_	M1 awar A1 depe If no cor	rd also for $-10x = -3$ nds on the award of at least M1 ; rect algebraic working then award no marks
1					Total 3 marks

5 (a)	Reflec	ction	B1 for reflection, reflect, reflected
	(in the line)	x = 2	B1 for $x = 2$
		2	
			NB: If more than one transformation then no marks
			can be awarded
(b)	Vertices at $(1, -1)(4, -1)(4, -3)(3)$, -3)	B2 Shape in correct position
		2	If not B2 then B1 for correct orientation of R but wrong
			position or 3 out of 4 vertices correct
(c)	Vertices at (3, 2) (3, 4) (4, 4) (4, 4)	4, 3)	B2
		2	If not B2 then B1 for shape of correct size and orientation
			OR
			a correct only a contract 1 contract 1
			$\begin{bmatrix} a \text{ context emargement scale factor} & \\ 2 \end{bmatrix}$, centre (1, 3)
			Total 6 marks

6	6 × 165 (= 990)			M1	
	("990" – 155) ÷ 5		3	M1 dep condone missing brackets	
		167		A1	
					Total 3 marks

7	$5.4^2 + 12.8^2 (= 193)$			M1	
	$\sqrt{5.4^2 + 12.8^2}$ or		3	M1 dep	
	$\sqrt{193}$ (= 13.89244399)				
		13.9		A1 awrt 13.9	
					Total 3 marks

8 (a)	g(g+4)		Award B2 also for $(g \pm 0)(g + 4)$ oe
		2	B1 for factors which, when expanded and simplified, give
			two terms, one of which is correct
			except B0 for $(g + 2)(g - 2)$
(b)			M1 for $(e \pm 6)(e \pm 4)$
		2	
	(e-6)(e+4)		A1
			Total 4 marks

9	$\frac{A}{r^2}$			M1	
	$\frac{1}{4\pi}$				
		$\sqrt{rac{A}{4\pi}}$	2	A1 accept equivalents eg. $\frac{\sqrt{A\pi}}{2\pi}$, $\frac{1}{2}\sqrt{\frac{A}{\pi}}$	
					Total 2 marks

10 (a) (i)		$2^2 \times 5$		B1 for $2^2 \times 5$ oe or 20
(ii)		$2^3 \times 3 \times 5^2$	3	B2 for $2^3 \times 3 \times 5^2$ oe or 600 (B1 for any product using powers of 2 and 3 and 5 or at least 300, 600 and 40, 80, 120)
(b)	$8 (= 2^n)$ or 2^3			M1 for one correct use of index laws eg. $8^5 \div 8^4$
		3	2	A1
				Total 5 marks

11 (i)		eg. 9 $(8x + 4) = 28 (10 - x)$	2	M1 for $0.5 \times 9 \times (8x + 4)$ oe or $7 \times (10 - x)$ oe (may be seen as part of an equation) A1 for any correct equation
(ii)	36x + 18 = 140 - 14x 50x = 122			M1 for correct removal of either bracket in an equation (ft providing equation is of form $a(x + b) = c(x + d)$) NB: This mark can be implied M1 dep ft for getting to $mx = k$ oe
	$x = 2.44 \text{ or } \frac{61}{25} \text{ oe}$ 7 × (10 - "2.44")	52.92	5	 A1 ft (at least 3 sig figs or a fraction) M1 ft their value substituted (must be positive) A1 cao NB: Working for part (ii) may be seen in part (i)
				Total 7 marks

12 (a)	1, 4, 11, 17, 19, 20	1	B1
(b)	correct cf graph		B2 Points at end of intervals and joined with curve or line segments
		2	If not B2 then B1(ft from a table with only one arithmetic error) for 4 or 5 of their points from table plotted consistently within each interval at their correct heights and joined with smooth curve or line segments
(c)		2	M1 ft for a cf graph horizontal line or mark drawn at 10 or 10.5 or vertical line or mark drawn at 238.5 – 239.5 incl
	238.5 - 239.5		A1 ft from their cf graph
			Total 5 marks

13 (a)		Russia	1	B1
(b)	$(2.63 \times 10^6) - (8.97 \times 10^5)$ or			M1 condone missing brackets
	1733(000) oe		2	
		1.733×10^{6}		A1 Accept 1.73×10^6
(c)	$(6.3 \times 10^5) \div (8.4 \times 10^6)$			M1
		7.5% oe		A1accept percentage, fraction, decimal or ratio
			2	3 or 0.075 or $2 \cdot 27$
				eg. $\frac{-1}{40}$ of 0.073 of 5.37
				SC: B1 FOR & R&TIO OF 3 : 40 OE
				Total 5 marks

14	16x - 8y = 14 12x - 8y = 6 4x = 8			M1 for appropriate multiplication to get coefficients of x or y the same (condone one arithmetic error) with the correct operation to eliminate one variable or for correct rearrangement of one equation followed by substitution in the other (condone one arithmetic error).
			3	M1(dep) to find value of second variable ft from value of their first variable
		x = 2 $y = 2.250e$		A1 Award 3 marks for correct values if at least first M1 scored
				Total 3 marks

15	$x = 0.417417 \dots \\ 1000x = 417.417 \dots \\ 999x = 417$	show	2	M1 for $1000x = 417.417$ and $x = 0.417417$ accept $x = 0.417$ selected for use oe A1for $\frac{417}{999}$ cso
				Total 2 marks

16	$0.5 \times 3 \times 8 \times \sin 110 (= 11.2)$ oe or			M1	M2 for	
	11.3				$2 \times 0.5 \times 3 \times 8 \times \sin 110$ or	
	$2 \times 0.5 \times 3 \times 8 \times \sin 110$ oe or		3	M1 dep	$3 \times 8 \times \sin 110$	
	2 × "11.2"					
		22.6		A1 awrt 22.6		
						Total 3 marks

17 (i)	$\frac{5}{12} \times \frac{n}{25} \left(= \frac{2}{15} \right) \text{oe or}$ $\frac{2}{15} \div \frac{5}{12} \text{oe}$	8	2	M1 A1
(ii)	6 25-"8"(17)			SC: BI for an answer of $\frac{1}{25}$ M1 ft from (a)
	$\frac{12}{12} \times \frac{25}{25} \left(=\frac{50}{50}\right)$			for one correct branch from (R, B) or (B,R) or (W,R) or (W,B) $\frac{5}{12} \times \frac{25 - "8"}{25} \left(= \frac{17}{60} \right) \text{ or } \frac{6}{12} \times \frac{"8"}{25} \left(= \frac{4}{25} \right) \text{ or } \frac{1}{12} \times \frac{"8"}{25} \left(= \frac{2}{75} \right) \text{ or }$ $\frac{1}{12} \times \frac{25 - "8"}{25} \left(= \frac{17}{300} \right)$
			3	NB: $\frac{7}{12} \times \frac{"8"}{25}$ implies BR + WR; $\frac{6}{12} \times \frac{25 - "8"}{25}$ implies RB and WB $\frac{1}{12}$ implies WB + WR
	$1 - \frac{17}{50} - \frac{2}{15}$			M1 ft from (a) for all products with the intention to add
		$\frac{79}{150}$ oe		A1cao accept 0.527 or 0.526 or 52.7% or 52.6%
				Total 5 marks

18 (a) (i)	$\mathbf{b} - 2\mathbf{a}$		B1
(ii)	$\frac{2}{3}\mathbf{b} - \frac{4}{3}\mathbf{a}$		B1 oe eg. $\frac{2}{3}$ (-2 a + b) Allow ft from (i)
(iii)	$\frac{2}{3}\mathbf{b} - \frac{1}{3}\mathbf{a}$	3	B1 oe. eg. $a + \frac{2}{3} (-2a + b)$ Allow ft from (ii)
(b)	shown	2	M1 for $\overrightarrow{WY} = -\mathbf{a} + 2\mathbf{b}$ oe or $\overrightarrow{XY} = \frac{2}{3} (-\mathbf{a} + 2\mathbf{b})$ oe Allow ft from (a) A1 for conclusion using correct vectors eg. $\overrightarrow{WY} = 2\mathbf{b} - \mathbf{a}$ $\overrightarrow{XY} = \frac{2}{3} (-\mathbf{a} + 2\mathbf{b})$ $\overrightarrow{XY} = \frac{2}{3} \overrightarrow{WY}$
			Total 5 marks

19 (a)	$\pi(r+1.5)^2 - \pi r^2 \ (= \ 0.1 \ \text{x} \ \pi r^2)$ $r^2 + 3r + 2.25 - r^2 = 0.1r^2$		3	M1 Correct expression for area of path (may be seen as part of an equation) M1 ind. $r^2 + 3r + 2.25$ or $r^2 + 3r + 1.5^2$ (i.e. correct expansion of brackets with or without π)
		$2r^2 - 60r - 45 = 0$		A1 Correct algebraic steps to $2r^2 - 60r - 45 = 0$
(b)	$\frac{60\pm\sqrt{(-60)^2-4\times2\times-45}}{2\times2}$			 M1 Condone 1 sign error; condone missing brackets around -60; accept 60²; some evaluation may be seen NB: allow + instead of ±
	$\frac{60 \pm \sqrt{3600 + 360}}{4}$		5	M1 for $\sqrt{3600+360}$ or $\sqrt{3960}$
	30.7(32) or $\frac{30\pm 3\sqrt{110}}{2}$			A1 dep on at least M1 awarded NB: Ignore -0.73
	(Area =) πx "30.732" ² (= 2967.12)			M1 ind (ft for r (at least 3 sf)) do not award for substitution of $r = 1.5$
		2970		A1 for 2960 – 2970
				Total 8 marks

20 (a)		2	1	B1
(b)	f(-1) = 8			M1 may see on graph
			2	
		-2		A1
(c)	Line drawn with negative			M1
	gradient at $(3, -4)$			
				M1 correct method to find gradient
			3	(vertical / horizontal ignore sign at this stage – must use
				scale on graph)
		-1		A1 accept -0.7 to -1.4 inc dep on method seen
				Total 6 marks

21	58.5 or 57.5 or			B1 for any one
	27.5 or 28.5 or			
	18.5 or 17.5			
	58.5		3	M1
	27.5-18.5			
		6.5		A1from correct working
				Total 3 marks

22	$(2x \pm 3) (3x \pm 5)$		4	M1
	3(2x-3)(2x+3) or			M2
	(2x-3)(6x+9)			
				(M1 for $3(4x^2 - 9)$ or $(6x - 9)(2x + 3)$)
		3x+5		A1 accept $\frac{3x+5}{3x+5}$
		3(2x+3)		6x+9
				Total 4 marks

23	$\tan ABC = \frac{25}{14} \text{ or } \tan ACB = \frac{14}{25}$ $ABC = 60.75 \text{ or } ACB = 29.24$ $AX = 14 \times \sin ``60.7" \text{ or }$ $AX = 25 \times \sin ``29.24"$ $AX = 12.2$ $\tan (TAX) = \frac{10}{"12.2"}$		6	M1 accept use of cos or sin or Sine rule or Cosine rule with $BC = \sqrt{821}$ (=28.6 or 29.7) A1 for <i>ABC</i> 60.7 – 60.8 or <i>ACB</i> = 29.2 – 29.3 M1 dep on M1 accept fully correct alternative methods A1 for 12 – 12.2 M1 dep on first M1 ft from " <i>AX</i> " accept fully correct alternative methods
		39.3		A1 for 39.3 – 39.4
				Total 6 marks

www.xtrapapers.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom