

Mark Scheme (Results)

June 2014

Pearson Edexcel International GCSE Chemistry (4CH0) Paper 1C Science Double Award (4SC0) Paper 1C

Pearson Edexcel Level 1/Level 2 Certificate Chemistry (KCHO) Paper 1C Science (Double Award) (KSCO) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014 Publications Code UG038368

All the material in this publication is copyright © Pearson Education I td 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Accept	Reject	Marks
1 (a)	B – (filter) funnel			1
	D – test tube/boiling tube			1
	E - pipette		teat pipette/dropping pipette	1
	F - beaker			1
(b)	M1 - A			1
	M2 - E			1

(Total marks for Question 1 = 6 marks)

Question number	Answer	Accept	Reject	Marks
2 (a) (i)	D - hydrocarbons			1
(b)	S U R V T			2
	First mark for S in box 1 AND R in box 3			
	Second mark for V in box 4 AND T in box 5			

(Total marks for Question 2 = 3 marks)

Question number	Expected Answer	Accept	Reject	Marks
3 (a) (i)	12			1
(ii)	M1 – 2	roman numeral		1
	M2 – two electrons in <u>outer/valence</u> shell Award M2 if M1 missing but not if incorrect Ignore references to magnesium and 2.8.2			1
(iii)	X^{2+}	Mg^{2+}		1
(b)	M1 – (79 x 24) + (10 x 25) + (11 x 26)	(0.79 x 24) + (0.10 x 25) + (0.11 x 26) for 2 marks		1
	M2 – divide by <u>100</u>	x 20) 101 2 111d1KS		1
	M3 – 24.3	24.32 with no working scores 2		1
	Mark M2 and M3 csq on M1 if one minor slip in numbers in M1 (eg 97 instead of 79 or 25 instead of 24)			
	M3 dep on M2			
	Correct answer with no working scores 3			
	IGNORE units			

(Total marks for Question 3 = 7 marks)

Answer	Accept	Reject	Marks
to increase the rate/speed (of the reaction)	to overcome the activation energy/to provide activation energy (for the reaction)	Answers referring to copper instead of copper(II) oxide	1
IGNORE to start the reaction/to provide energy/references to the copper(II) oxide will not react without heat / to make it dissolve faster / to give particles more energy			
it stops disappearing	stops dissolving		1
OR there is a (black) suspension/solid /copper(II) oxide	precipitate/ppt	any colour other than black	
OR the mixture/it turns cloudy/black IGNORE crystals			
to remove (unreacted/excess) copper(II) oxide IGNORE references to impurities/crystals	to remove (unreacted/excess) solid to obtain a solution (of	to separate copper(II) oxide from sulfuric acid	1
copper(II) sulfate/the crystals are less	reverse argument	references to freezing	1
soluble in cold water (than in hot water) OR solubility decreases with temperature IGNORE reference to water evaporating	ions join together (to form a lattice) ionic lattice forms		
	to increase the rate/speed (of the reaction) IGNORE to start the reaction/to provide energy/references to the copper(II) oxide will not react without heat / to make it dissolve faster / to give particles more energy it stops disappearing OR there is a (black) suspension/solid /copper(II) oxide OR the mixture/it turns cloudy/black IGNORE crystals to remove (unreacted/excess) copper(II) oxide IGNORE references to impurities/crystals copper(II) sulfate/the crystals are less soluble in cold water (than in hot water) OR solubility decreases with temperature	to increase the rate/speed (of the reaction) IGNORE to start the reaction/to provide energy/references to the copper(II) oxide will not react without heat / to make it dissolve faster / to give particles more energy it stops disappearing OR there is a (black) suspension/solid /copper(II) oxide OR the mixture/it turns cloudy/black IGNORE crystals to remove (unreacted/excess) copper(II) oxide IGNORE references to impurities/crystals to obtain a solution (of copper(II) sulfate/the crystals are less soluble in cold water (than in hot water) OR solubility decreases with temperature to overcome the activation energy/to provide activation energy (for the reaction) to overcome the activation energy/to provide activation energy/for the reaction)	to increase the rate/speed (of the reaction) IGNORE to start the reaction/to provide energy/references to the copper(II) oxide will not react without heat / to make it dissolve faster / to give particles more energy It stops disappearing OR there is a (black) suspension/solid /copper(II) oxide OR the mixture/it turns cloudy/black IGNORE crystals to remove (unreacted/excess) copper(II) oxide IGNORE references to impurities/crystals to remove (unreacted/excess) copper(II) oxide copper(II) sulfate/the crystals are less soluble in cold water (than in hot water) OR solubility decreases with temperature to overcome the activation energy (for the reaction) Answers referring to copper (II) oxide copper (II) oxide activation energy (for the reaction) Answers referring to copper (II) oxide copper (II) oxide copper(II) oxide any colour other than black to remove (unreacted/excess) solid it o remove (unreacted/excess) oxide from sulfuric acid to obtain a solution (of copper(II) sulfate) references to freezing references to freezing lattice)

(e)	IGNORE shades of colour		any colour other than blue	1
(f)	on filter paper/kitchen towel/tissue paper OR leave / in a warm place / in the sun / on a radiator / near a window / in a (warm/drying) oven	OWTTE desiccator	heat / hot oven	1

(Total marks for Question 4 = 6 marks)

	Questi numb		Answer	Accept	Reject	Marks
5	(a)	(i)	В	lower case letters		1
		(ii)	D			1
		(iii)	A			1
		(iv)	C			1
	(b)		M1 - (a substance) containing (two or more) elements		mixture for M1 only	1
			IGNORE atoms for M1 only		molecules/particles bonded, etc for M1	1
			M2 – bonded (together) / chemically combined (in a fixed ratio)	<u>chemically</u> joined	and M2	
	(c)	(i)	M1 - Na loses electron(s)			1
			M2 – CI gains electron(s)			1
			M3 – Na becomes 2.8 AND chlorine becomes 2.8.8			1
			If incorrect number of electrons transferred, max 2			
			IGNORE references to full shells			
			max 1 for mention of covalent bonding			
			All 3 marks can be scored from correct dot and cross diagrams showing electron transfer			

(ii)	M1 – Na = 23 <u>AND</u> CI = 35.5		1
	M2 – 58.5		1
	M2 dep on M1		
	IGNORE units		
	Correct answer with no working scores 2		

(Total marks for Question 5 = 11 marks)

Quest numb		Answer	Accept	Reject	Marks
6 (a)	(i)	13(.0)			1
	(ii)	1.4			1
	(iii)	25(.0)			1
(b)		indigo			1
		red			1
(c)		NaOH + HCl → NaCl + H ₂ O	$H^+ + OH^- \rightarrow H_2O$		1
		IGNORE state symbols even if incorrect			

(Total marks for Question 6 = 6 marks)

Question number	Answer	Accept	Reject	Marks
7 (a)	magnesium chloride/MgCl ₂			1
	oxygen/O ₂	carbon dioxide/CO ₂		1
	sulfuric (acid)/H ₂ SO ₄ IGNORE hydrogen sulfate			1
	If name and formula given, both must be correct			
(b)	$Mg + H_2O \rightarrow MgO + H_2$			1
	IGNORE state symbols even if incorrect			
	Penalise incorrect symbols and failure to use subscripts			

(Total marks for Question 7 = 4 marks)

Question number	Answer	Accept	Reject	Marks
8 (a)	M1 – for both electron diagrams correct IGNORE inner electrons of N even if incorrect M2 – for both charges correct M3 – for correct ratio of ions	any combination of dots and crosses		3
(b)	6Li + N ₂ → 2Li ₃ N M1 – all formulae correct M2 – balanced M2 dep on M1 IGNORE state symbols even if incorrect	multiples and fractions		2
(c) (i)	I aq g			1
(ii)	M1 – any number from 8 to 14			1
	M2 – LiOH/lithium hydroxide is a base/alkali OR hydroxide ions/OH formed/present	ammonia / <u>metal</u> hydroxides / <u>Group 1</u> hydroxides are bases/alkalis		1

(d)	ions cannot move OR ionic compounds only conduct when molten/in solution	ionic compounds do not normally conduct when solid	1
	IGNORE references to electrons		

(Total marks for Question 8 = 9 marks)

Question number	Answer	Accept	Reject	Marks
9 (a) (i)	А	Methane		1
(ii)	С	Ethene		1
(iii)	С	Ethene		1
(b)	M1 – (molecular) C ₄ H ₁₀	H ₁₀ C ₄	CH ₃ CH ₂ CH ₂ CH ₃	1
	$M2$ – (empirical) C_2H_5	H ₅ C ₂		1
	ECF from molecular formula			
(c) (i)	M1 – (name) alkane(s)			1
	M2 – (general formula) C _n H _{2n+2}			1
(ii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		missing Hs and bonds	1

(d)	M1 – incomplete combustion/insufficient oxygen	lack of oxygen /less oxygen / only 1½ oxygen (in equation)	
	M2 – toxic/poisonous/causes death		
	IGNORE dangerous/harmful		1
	M3 – reduces the capacity of the blood to carry oxygen IGNORE references to suffocation/cannot breathe	correct references to haemoglobin	1
		/blood carries less	
	IGNORE blood carries no oxygen	oxygen/blood does not	
		release oxygen as	1
		easily	

(Total marks for Question 9 = 11 marks)

Question number	Answer	Accept	Reject	Marks
10 (a) (i)	Any two from:			2
(ii)	M1 – ductile			1
	M2 – good conductor <u>of electricity</u> Apply list principle Answers can be given in any order			1
(b) (i)	strong(er) IGNORE references to density and rusting	other correct descriptions		1
(ii)	lower density / resists corrosion IGNORE lighter	does not rust greater strength to weight ratio		1
(c) (i)	heat / thermal energy / heat energy is given out OR transferred/lost to the surroundings IGNORE references to bond formation and breaking	produced produces an increase in temperature it gets hot		1
(ii)	M1 - (aluminium/it is) more reactive	iron is less reactive		1
	M2 – (aluminium/it) displaces iron (from its oxide)	replaces it/aluminium takes oxygen away from iron (oxide)		1
	M2 DEP on M1			

(iii)	M1 – aluminium	loses (three) electrons /oxidation number increases	1
	M2 – gains oxygen	combines with oxygen / forms aluminium oxide	1
	M2 DEP on M1	7 TOTTIS aluminium oxide	
	IGNORE references to magnesium		
(d)	temperature reached ≥ m.pt of iron	high temperature reached / gets very hot	1
	IGNORE exothermic / heat produced / lots of energy produced		

(Total marks for Question 10 = 12 marks)

Question number	Answer	Accept	Reject	Marks
11 (a)	large hydrocarbons/alkanes/molecules become small ones	(large) hydrocarbons or alkanes or molecules become smaller ones	references to polymers	1
	IGNORE references to forming alkenes/ethene/ more useful molecules	long chains become short chains		
(b)	M1 – (add to) bromine (water)/Br ₂ IGNORE Br	(acidified) potassium manganate(VII)		1
	M2 – (bromine) decolourised/turns colourless			1
	IGNORE starting colour and clear	starting colour and clear decolourised/turns colourless		
	M2 dep on M1, but can be scored for a near miss in M1, eg Br or bromide (water)			
(c)	M1 – (catalyst) silica / silicon dioxide / alumina / aluminium oxide	correct formula aluminosilicate / zeolite		1
	N.B. if both name and formula given, mark the name only			
	M2 – 600-700 °C	any value or range within this range equivalent temperatures in Kelvin		1

(Total marks for Question 11 = 5 marks)

Question number	Answer	Accept	Reject	Marks
12 (a) (i)	$M1$ – divide all the masses by respective A_r		division by atomic number/division upside down for all	1
	M2 – to give 0.02 : 0.02 : 0.04		marks	1
	M3 – (mole) ratio is 1 : 1 : 2 Correct ratio or empirical formula with no working scores 0/3			1
(ii)	$M1 - 204 \div 102 = 2$ OR 102 x 2 = 204	(2 x 12) + (2 x 19) + (4 x 35.5) = 204		1
	M2 – C ₂ F ₂ Cl ₄ Correct answer with no working scores 2 marks	symbols in any order	FI for F	1
(b)	:F: :CI	FI for F		2
	M1 – all four bonding pairs correctM2 – rest of diagram correctM2 dep on M1	any combination of dots and crosses		

IGNORE inner shell e	ectrons even if		
incorrect Award 1 mark for sim	ilar molecules,		
eg CCI ₄ and CF ₄	·		

(Total marks for Question 12 = 7 marks)

Question number	Answer	Accept	Reject	Marks
13 (a)	covalent			1
(b) (i)	M1 – giant covalent / giant structure/lattice/networkM2 – strong (covalent) bonds/many (covalent) bonds	macromolecular giant molecular	Max 1 if bonding stated to be intermolecular/ionic/metallic	1
	M3 – lot of (thermal/heat) energy requiredM4 – to <u>break</u> bonds			1
(ii)	 M1 -intermolecular forces(of attraction) / forces (of attraction) between molecules M2 - are weak / little (thermal/heat) energy required (to overcome the forces) M2 DEP on M1 Weak bonds on its own = 0 	intermolecular bonds in place of intermolecular forces	any indication that covalent/ionic/metallic bonds are broken scores 0	1
(c)	theory B AND since there are no/fewer gas molecules in space OR there is no/less gas in space OR space is a vacuum	fewer gas molecules at high altitude/less gas at high altitude air/specified gas in place of gas ORA		1

(d)	high temperature AND since (forward) reaction is endothermic/absorbs heat	1
	IGNORE references to le Chatelier's principle	

(Total marks for Question 13 = 9 marks)

number Answer Accept	Reject	Marks
number 14 (a) M1 — (H H) (C C C C C C C C C C C C C C C C C C C	just plastic ached	1 1 1 1 1

(b)	Any two from	OWTTE	
	M1 – (many) small molecules/monomers join up		
	M2 - double bond becomes single bond/ it becomes saturated	double bond breaks and single bond forms	
	M3 – increase in mass/chain length/size		
			2
(c) (i)	inert(ness) IGNORE strong bonds / long chains	unreactive/non-polar	1
(ii)	M1 – produces greenhouse gases/toxic gases/poisonous gases	carbon dioxide	1
	M2 – (landfill) uses up land / takes up space		1
	OR new sites hard to find		

(Total marks for Question 14 = 9 marks)

	Questi numb		Answer	Accept	Reject	Marks
15	(a)	(i)	$M1 - M_r (NaOH) = 40$			1
			M2 – 10(.0) ÷ M1			1
			M3 – 0.25 (mol) Correct answer with no working scores 3			1
		(ii)	M1 – 0.25 x 1000 ÷ 250			1
			M2 – 1(.0) (mol/dm ³) Correct answer with no working scores 2	M3 from (a)(i) ÷ 250 / 0.001 for 1 mark		1
			Mark csq throughout			

(b) (i)	M1 – (reading at end) 25.20		1
	M2 – (reading at start) 1.65		1
	M3 – (volume added) 23.55 Award 1 mark for correct end and start readings in reverse order Mark M3 csq on M1 and M2 Penalise lack of two decimal places once only in a correct answer		1
(ii)	M1 – (colour at start) yellow		1
	M2 – orange/pink	red	1
(iii)	different volumes can be measured /continuously graduated / addition (of acid) can be controlled / volume required is not known IGNORE references to precision or accuracy	pipette measures one volume only	1
(c) (i)	M1 – 2(.00) x 200 ÷ 1000 M2 – 0.4(0) (mol) Correct final answer with no working scores 2 marks	400 for 1 mark	1
(ii)	M1 – $n(CO_2) = 0.2(0) / \frac{1}{2}$ of M2 from (c)(i) (mol)		1
	M2 - mass(CO ₂) = 8.8(0) (g) / $M1$ x 44 Correct final answer with no working scores 2 marks	(Total marks for Question 15 – 15 marks	1

(Total marks for Question 15 = 15 marks)