Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Chemistry (4CH0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 4CHO_1C_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer Notes	Marks
1 (a)		3
(b) (i)	C (R) The only correct answer is C because food colouring R produces one spot so contains only one dye A is not correct because food colouring P produces four spots so does not contain only one dye B is not correct because food colouring Q produces three spots so does not contain only one dye D is not correct because food colouring S produces two spots so does not contain only one dye	1
(ii)	C (Q, R and S) The only correct answer is C because food colourings Q, R and S have one dye in common as they all produce one spot which has travelled the same distance \boldsymbol{A} is not correct because P, Q and R do not all produce one spot which has travelled the same distance B is not correct because P, R and S do not all produce one spot which has travelled the same distance D is not correct because P, Q, R and S do not all produce one spot which has travelled the same distance	1

Question number	Answer	Notes	Marks	
1 (b) (iii)	M1 P	M2 largest number of/four spots (in the chromatogram)	ALLOW "four dyes" ALLOW blobs / dots / marks / points for spots M2 DEP on M1	

Total for Question 1 = 7 marks

Question number	Answer Notes	Marks
2 (a)	C (tap funnel) The only correct answer is C because the apparatus containing the dilute hydrochloric acid is called a tap funnel \boldsymbol{A} is not correct because the apparatus containing the dilute hydrochloric acid is not called a burette \boldsymbol{B} is not correct because the apparatus containing the dilute hydrochloric acid is not called a pipette D is not correct because the apparatus containing the dilute hydrochloric acid is not called a thistle funnel	1
(b)	$\mathrm{CaCO}_{3}+\mathbf{2 ~ H C l} \rightarrow \mathrm{CaCl}_{2}+$ ACCEPT multiples $\mathrm{CO}_{2}+\mathbf{H}_{\mathbf{2}} \mathbf{O}$ $\mathbf{M 1} \mathrm{H}_{2} \mathrm{O}$ $\mathbf{M 2}$ correct balancing $\mathbf{M 2}$ DEP on M1 Use of lower case letters, incorrect subscript $/$ superscript, penalise M1, but can score M2	2
(c)	B (it turns limewater milky) The only correct answer is B because carbon dioxide turns limewater milky \boldsymbol{A} is not correct because carbon dioxide does not turn red litmus blue \boldsymbol{C} is not correct because carbon dioxide does not relight a glowing spill \mathbf{D} is not correct because carbon dioxide does not burn with a squeaky pop	1

Question number	Answer	Notes	Marks
2 (d) (i) (ii)	it is more dense than air (gas) syringe / over water	IGNORE heavier than air IGNORE more dense than oxygen ACCEPT description of collecting over water	1 1
(e)	any value between 4(.0) and 6.9		1
(f)	M1 (from) green M2 (to) black	ACCEPT shades of green e.g. dark Award (1) for both colours correct but in wrong order	2
(g)	any two from: M1 does not support combustion M2 more dense than air M3 can be compressed (into a fire extinguisher cylinder) M4 does not conduct electricity	ALLOW does not burn / not flammable ALLOW more dense than oxygen IGNORE heavier than air IGNORE references to reactivity / cost / not harmful	2

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 3 (a) (i) \& \begin{tabular}{l}
Any two from: \\
M1 sodium gets smaller /disappears \\
M2 sodium moves/darts around \\
M3 white trail \\
M4 melts/forms a ball \\
M5 litmus/solution/liquid turns blue
\[
\begin{aligned}
\& \mathbf{2} \mathrm{Na}(\mathbf{s})+\mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathbf{I}) \rightarrow \mathbf{2} \mathrm{NaOH}(\mathbf{a q}) \\
\& +(\mathbf{1}) \mathrm{H}_{2}(\mathbf{g})
\end{aligned}
\] \\
M1 correct balancing \\
M2 correct state symbols
\end{tabular} \& \begin{tabular}{l}
ALLOW \\
dissolves \\
IGNORE floats fizzing/bubbles/ effervescence IGNORE references to flames / sparks / heat produced / explodes \\
ALLOW \\
multiples and fractions
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& (both) contain one electron in the outer(most)/valence shell
```
(most reactive) potassium/K
sodium/Na
(least reactive) lithium/Li
``` \& ALLOW same number of electrons in the outer(most) shell \& 1

1

\hline
\end{tabular}

| Question number | Answer Notes | Marks |
| :---: | :---: | :---: |
| 4 (a) | C (elements)
 The only correct answer is C because the substances found in the Periodic Table are elements
 A is not correct because the substances found in the Periodic Table are not alloys
 B is not correct because the substances found in the Periodic Table are not compounds
 D is not correct because the substances found in the Periodic Table are not mixtures | 1 |
| (b) | A (atomic number)
 The only correct answer is A because the substances found in the Periodic Table (elements) are arranged in order of increasing atomic number
 \boldsymbol{B} is not correct because the substances found in the Periodic Table (elements) are not arranged in order of increasing mass number
 C is not correct because the substances found in the Periodic Table (elements) are not arranged in order of increasing nucleon number
 D is not correct because the substances found in the Periodic Table (elements) are not arranged in order of increasing relative atomic mass | 1 |

| Question number | Answer | | | | Notes | Marks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 (c) | | | | | REJECT
 NE/ne/nE
 IGNORE units | 3 |
| | Gas | Symbol | Boiling point | Reaction | | |
| | helium | | | | | |
| | neon | Ne | | | | |
| | argon | | $\begin{aligned} & \hline 40 \text { to } \\ & 100 \end{aligned}$ | | | |
| | krypton | | | | | |
| | xenon | | | no reaction | | |
| (d) | M1 argon does not react with tungsten/filament | | | | ALLOW metal ALLOW argon is inert / unreactive | 2 |
| | M2 (because) argon has full outer shell of
 electrons / does not (easily) gain or lose
 or share electrons
 OR
 tungsten/filament reacts with oxygen | | | | | |
| | | | | | ALLOW metal ALLOW tungsten combusts in oxygen /is oxidised in oxygen | |

Total for Question 4 = 7 marks

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 5 (a) (i) | (because) all of the acid/HCl is reacted/used up
 OR
 (because) the cobalt(II) oxide is in excess | Assume "it" refers to the acid
 ACCEPT (because) cobalt(II) oxide is added until no more of it can react
 ALLOW (because) cobalt(II) oxide is added until no more of it can dissolve | 1 |
| (b) | to increase the rate of reaction | ACCEPT to make reaction faster IGNORE references to dissolving the cobalt(II) oxide
 IGNORE references to increases (kinetic) energy / particles move more/faster | 1 |
| (c) | glass does not react with acid/solution
 OR
 metal may/does react with acid/solution | IGNORE glass is unreactive
 ALLOW so no other/unwanted metal ions form ALLOW glass is not a good (thermal) conductor and so less likely to burn yourself (or reverse argument for metal) | 1 |

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 5 (d) | solid stops disappearing / solid settles/left over | ALLOW cobalt(II) oxide/it for solid ALLOW dissolving for disappearing IGNORE references to fizzing/effervescence/gas given off | 1 |
| (e) | the (soluble) impurity will also be present with the (cobalt chloride) crystals | ALLOW the (soluble) impurity remains / won't be removed by filtration/in Step 5 | 1 |
| (f) | IGNORE any initial steps that try to remove impurities e.g. filter / wash
 M1 heat/boil (the filtrate / evaporating basin)
 M2 until reach crystallisation point
 / until solution is concentrated/ saturated / until crystals form
 on the end of a glass rod
 M3 leave the solution (to cool) and
 filter (to remove the crystals)
 M4 wash the crystals (with a small
 amount of deionised water)
 M5 dry the crystals on filter/tissue paper / in a (warm) oven | ALLOW evaporate
 ALLOW until most/some of the water has evaporated
 If solution is heated to evaporate all water at this stage see METHOD 2 below.
 If $\mathbf{M 2}$ is scored but the saturated solution is then left to evaporate the remaining water then M3 cannot be awarded, but M4 \& M5 can be awarded
 IGNORE just "dry it" ALLOW leave (the crystals) to dry REJECT hot oven or any method of direct heating (eg Bunsen burner) | 5 |

| 5 (f) | METHOD 2
 If the filtrate is heated to evaporate all water:
 M1 heat/boil (the filtrate / evaporating basin)
 M4 wash the crystals (with a small
 amount of deionised water)
 M5 dry the crystals on filter/tissue paper / in a (warm) oven
 ALLOW evaporate
 IGNORE just "dry it" ALLOW leave to dry REJECT hot oven or any method of direct heating (eg Bunsen burner)
 M5 DEP on M4 in METHOD 2 only | |
| :---: | :---: | :---: |
| (g) (i) | $\begin{aligned} & \mathrm{CoCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ & \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ | 1 |
| (ii) | B (dehydration)
 The only correct answer is B because when the pink solid $\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ is heated to from the blue solid CoCl_{2} it is losing water which is dehydration
 \boldsymbol{A} is not correct because when the pink solid $\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ is heated to from the blue solid CoCl_{2} it is losing water which is not crystallisation
 \boldsymbol{C} is not correct because when the pink solid $\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ is heated to from the blue solid CoCl_{2} it is losing water which is not hydration
 \boldsymbol{D} is not correct because when the pink solid $\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ is heated to from the blue solid CoCl_{2} it is losing water which is not a redox reaction | 1 |

Total for Question 5 = 12 marks

| Question
 number | Answer | Notes | Marks |
| :---: | :--- | :--- | :---: |
| 6 (a) | ammonia / NH_{3} | If name and formula
 given, both must be
 correct | 1 |
| (b) | K^{+} | ACCEPT $\mathrm{CO}_{3}{ }^{2-}$
 ALLOW
 hydrogencarbonate/
 HCO $_{3}-$ | 2 |
| (c) (i) | M1 (test 3A) no carbonate
 (ion) present | M2 (test 3B) no halide (ion)
 present
 ACCEPT no chloride,
 bromide or iodide
 (ion) present (all
 three halides must
 be mentioned)
 ALLOW one halide if
 result is given e.g.
 no chloride ions
 present because a
 white precipitate
 would form | If name and formula |
| (ii) | If
 given both must be
 correct | 1 | |

Total for Question 6 = 5 marks

| Question
 number | Answer | Notes | Marks |
| ---: | :--- | :--- | :---: |
| 7 (a) (i) | (it has) gained oxygen /
 oxygen has been added (to
 it) | ACCEPT oxidation
 number has increased /
 changed from -2 to +4
 ALLOW gained O / O
 has been added
 IGNORE references to
 electrons | 1 |
| (ii) | $\mathrm{Sb}_{2} \mathrm{O}_{4}+\mathbf{2 ~ C ~} \rightarrow \mathbf{2 ~ S b +}$
 $\mathbf{2 ~ \mathrm { CO } _ { 2 }}$ | | 1 |

Total for Question 7 = 7 marks

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| $8 \text { (a) (i) }$ |
 M1 and M2 all points plotted correctly (\pm half a square) | IGNORE
 plotting of (0, $0)$.
 Deduct one mark for each point plotted incorrectly. | 2 |
| (ii) | suitable curve drawn, avoiding the anomalous point | ALLOW curve drawn \pm half a square through other points | 1 |

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 8 (b) (i) | measured volume of gas later (than 2 minutes) | ALLOW misread the syringe / syringe not read at eye level | 1 |
| (ii) | | | |
| | M1 value read correctly ($\pm 1 \mathrm{~cm}^{3}$) from candidate's graph | | 2 |
| | M2 vertical line drawn at 2 min intersecting curve
 OR horizontal line drawn from vertical axis intersecting curve at 2 min | ALLOW a cross on the curve at 2 mins | |

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 8 (c) | M1 the reaction has finished
 M2 because all the acid
 has reacted / the acid has been used up | ALLOW references to no more gas given off
 IGNORE the reactants have been used up
 IGNORE the zinc has reacted IGNORE the zinc is in excess
 REJECT all of the zinc has reacted / the zinc has been used up | 2 |
| (d) (i)
 (ii) | the gradient/slope of the curve decreases
 M1 fewer particles (of
 acid/zinc to react)
 M2 fewer (successful) collisions (between particles) per second | ACCEPT the curve becomes less steep ALLOW the curve levels off
 ALLOW concentration of acid decreases
 ACCEPT less frequent (successful) collisions
 IGNORE references to less chance of collision
 IGNORE references to wrong type of particles eg molecules
 Any reference to particles losing energy / moving more slowly scores 0 out of 2 . | 1
 2 |

Total for Question 8 = 11 marks

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 9 | (magnesium): | IGNORE any references to carrying charge throughout the question | |
| | M1 delocalised electrons | ALLOW sea of electrons IGNORE free electrons | 6 |
| | M2 are able to flow/move (through the structure) | ALLOW are mobile | |
| | | M2 DEP on mention of electrons in M1 | |
| | (solid MgCl_{2}): | Any mention of moving ions / atoms /nuclei / protons loses M1 \& M2 | |
| | M3 (positive and negative) ions | IGNORE refs to electrons | |
| | M4 are in fixed positions /can only
 vibrate / cannot move (aqueous MgCl_{2}): | M4 DEP on M3 | |
| | M5 (positive and negative) ions | REJECT refs to electrons | |
| | M6 can move/flow (to electrodes of opposite charge) | M6 DEP on M5 | |

Total for Question 9 = 6 marks

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 10 (a) | M1 the (mean/average) energy of the molecules/particles increases
 M2 molecules/particles/they escape (from the liquid)
 OR
 intermolecular forces are broken
 AND the molecules/particles move further apart | ACCEPT
 molecules/ particles gain energy ACCEPT the (mean/average) speed/velocity of the molecules increases ACCEPT molecules move faster
 IGNORE
 evaporate | 2 |
| (b) | $\mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HBr}+\mathrm{HBrO}$ | ALLOW reactants in either order ALLOW products in either order | 1 |

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 10 (c) (i) | $\begin{aligned} & \text { M1 } n\left[\mathrm{MgBr}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]=0.125(\mathrm{~mol}) \\ & \text { M2 mass of } \mathrm{MgBr}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}=0.125 \times \\ & 292 \\ & \text { M3 }=36.5(\mathrm{~g}) \end{aligned}$
 OR
 M1 mass of $\mathrm{MgCO}_{3}=0.125 \times 84$ OR 10.5 (g)
 M2 $84(\mathrm{~g})$ of MgCO_{3} give $292(\mathrm{~g})$ of $\mathrm{MgBr}_{2} .6 \mathrm{H}_{2} \mathrm{O}$
 OR mass of $\mathrm{MgBr}_{2} .6 \mathrm{H}_{2} \mathrm{O}=(292 \div$ 84) $\times 10.5(\mathrm{~g})$
 M3 mass of $\mathrm{MgBr}_{2} .6 \mathrm{H}_{2} \mathrm{O}=36.5(\mathrm{~g})$
 OR
 M1 mass of $\mathrm{MgBr}_{2}=0.125 \times 184$ OR 23 (g)
 M2 mass of $6 \mathrm{H}_{2} \mathrm{O}=0.125 \times 6 \times 18$ OR 13.5 (g)
 M3 $23+13.5=36.5(\mathrm{~g})$
 OR $36.5 \div 292=0.125 \text { scores }$ | M3 DEP on valid working in M2
 M3 DEP on valid working in M2 | 3 |

| Question
 number | Answer | Notes | Marks |
| :---: | :--- | :--- | :---: |
| 10 (c) (ii) | any two from:
 M1 solution not left for long enough | ALLOW
 crystallisation was
 incomplete /
 some crystals
 remain in solution | 2 |
| | M2 magnesium carbonate is impure
 M3 some magnesium carbonate did
 not react | ALLOW reaction
 (between
 carbonate and
 acid) did not
 go to completion | M4 some of the product was lost
 during
 Transfer between pieces of
 apparatus
 IGNORE
 references to
 spillage |
| M5 (hydrated magnesium bromide)
 loses some
 water of crystallisation | ALLOW
 magnesium
 bromide is not
 fully hydrated | M6 some of the product dissolves
 when the
 crystals are washed | |

Total for Question 10 = 8 marks

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 11 | M1 powder/crush the malachite
 (using the pestle and mortar)
 M2 add the malachite/powder to dilute sulfuric acid (in a beaker)
 OR
 add dilute sulfuric acid to the malachite (in a beaker)
 M3 filter (using filter funnel and paper)
 M4 add magnesium powder to the
 filtrate/solution/copper sulfate
 M5 method to collect/obtain/ remove the residue/copper
 (using filter funnel and paper)
 M6 reference to appropriate use of at least two pieces of apparatus | ALLOW
 powder/crush the ore
 ACCEPT mix the powder with dilute sulfuric acid (in a beaker)
 ALLOW decant
 IGNORE any later steps e.g. washing / evaporation | 6 |

| 11 | OR
 If malachite and magnesium are both added to the acid at the same time, then:
 M1 powder/crush the malachite
 (using the pestle and mortar)
 M2 add the malachite/powder to dilute sulfuric acid and add the magnesium (in a beaker)
 M3 filter and collect/obtain the residue/copper (using filter
 funnel and paper)
 M4 reference to appropriate use of at least two pieces of apparatus | IGNORE any later steps e.g. washing / evaporation | |
| :---: | :---: | :---: | :---: |

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 12 (a) \& \multicolumn{2}{|l|}{\begin{tabular}{l}
A (boiling point) \\
The only correct answer is A because the property of hydrocarbons used to separate crude oil into fractions is their boiling point \\
B is not correct because the property of hydrocarbons used to separate crude oil into fractions is not their chemical reactivity \\
C is not correct because the property of hydrocarbons used to separate crude oil into fractions is not their density \\
D is not correct because the property of hydrocarbons used to separate crude oil into fractions is not their melting point
\end{tabular}} \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
camping gas / bottled gas / calor gas \\
fuel for (aero) planes
\end{tabular} \& \begin{tabular}{l}
ALLOW (fuel for) stoves / (fuel for) cooking / (fuel for) heating \\
IGNORE fuel by itself \\
ACCEPT fuel for jets/jet engines \\
ACCEPT fuel for heating/lamps ALLOW paraffin heaters/lamps ALLOW kerosene heaters/lamps
\end{tabular} \& 1

1

\hline (iii) \& bitumen \& \& 1

\hline
\end{tabular}

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 12 (c) (i) | silica / alumina | ACCEPT $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ACCEPT silicon dioxide / aluminium oxide ACCEPT aluminosilicate(s) ACCEPT zeolite(s) | 1 |
| | 600-700 $\left.{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$ | ACCEPT any temperature or range of temperatures between 600 and $700\left({ }^{\circ} \mathrm{C}\right)$ inclusive | 1 |
| | $\mathrm{C}_{14} \mathrm{H}_{30} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{12} \mathrm{H}_{26}$ | | 1 |
| | $\mathrm{H} \quad \mathrm{H}$ | IGNORE bond angles | 1 |
| | poly(ethene) / polyethene / polythene | ALLOW polyethylene | 1 |
| | M1 it is inert | ALLOW unreactive | 2 |
| | M2 (so) does not biodegrade | ALLOW description of nonbiodegradable e.g. does not decompose naturally / is not broken down by microorganisms | |
| | | IGNORE references to burning producing harmful gases | |

Total for Question 12 = 11 marks

| Question number | Answer | | | | Notes | Marks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 (a) | | | | | Penalise missing trailing zeroes and/or extra zeroes once only e.g. 16 / 16.00 | 3 |
| | | Initial | After 1 min | Increase | | |
| | $\begin{array}{\|l\|} \hline \text { expt } \\ 1 \\ \hline \end{array}$ | 16.0 | 19.0 | 3.0 | | |
| | $\begin{array}{\|l} \hline \text { expt } \\ 2 \\ \hline \end{array}$ | 16.0 | 21.0 | 5.0 | | |
| | $\begin{array}{\|l} \hline \text { expt } \\ 3 \end{array}$ | 16.0 | 27.5 | 11.5 | | |
| | (1) mark for each correct column
 Mark "Increase" column CQ on initial and after 1 min readings | | | | | |
| (b) | M1 the reaction occurs more quickly
 M2 so the heat energy/thermal energy is transferred to the water more quickly | | | | ALLOW increased frequency of collisions | 2 |
| | | | | | ACCEPT the water/liquid is heated more quickly ALLOW more heat energy/thermal energy produced in same time period
 Max (1) for "more reactions occur so more heat produced" | |

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 13 (c) (i) | M1 stays the same / does not change
 M2 because same temperature AND same surface area/size pieces of zinc
 OR because same concentration of acid | M2 DEP on M1 | 2 |
| (ii) | ```M1 greater (temperature increase) M2 same amount of heat energy/thermal energy transferred/produced M3 (but) smaller volume/amount of solution/acid to transfer energy to``` | ALLOW "heat" or "energy" in place of "heat energy"
 ALLOW (but) smaller volume/amount of solution/acid to heat up | 3 |

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 14 (a) | M1 0.01740×0.0200
 OR $\frac{17.4(0) \times 0.0200}{1000}$
 M2 $3.48 \times 10^{-4} /$
 0.000348 (mol) | $\begin{aligned} & \text { ACCEPT } 3.5 \times 10^{-4} \\ & \text { ALLOW errors in } \\ & \text { powers of } 10 \text { in } \\ & \text { converting } \mathrm{cm}^{3} \text { to } \mathrm{dm}^{3} \\ & \text { e.g. } 0.348 / 0.35 / 348 \\ & / 350 \text { for } \mathbf{~ M 2} \end{aligned}$ | 2 |
| (b) | M2 from (a) $\times 5$ evaluated correctly and quoted to at least two significant figures | If (a) was correct, this should be 1.74×10^{-3} / 0.00174 (mol) ACCEPT 0.0017 | 1 |
| (c) | answer from (b) $\times 56.0$ evaluated correctly and quoted to at least two significant figures | If (b) was correct, this should be 0.0974 (g)
 ACCEPT 0.09744 /
 0.097 | 1 |
| (d) | answer from (c) divided by 0.298 and then $\times 100$ and evaluated correctly and quoted to at least two significant figures | If (c) was correct, this should be 32.7 (\%)
 ACCEPT 33 / 32.68 / 32.6 from 0.097(g) | 1 |

Total for Question 14 = 5 marks

| Question
 number | Answer | Notes | Marks |
| :---: | :--- | :--- | :---: |
| 15 (a) | M1 break down/decomposition of a
 compound | ALLOW electrolyte/
 substance for
 compound
 IGNORE separation
 M2 using electricity | 2 |
| (b) | (graphite) will not react with chlorine using dc /
 direct current | ALLOW because it
 is (an) inert
 (electrode)
 ALLOW graphite
 does not react with
 zinc chloride
 IGNORE references
 to graphite being a
 better conductor
 IGNORE references
 to cost | 1 |

| Question
 number | Answer | Notes | Marks |
| :---: | :--- | :--- | :---: |
| 15 (d) | M1 should be $-2 \mathrm{e}^{-} /$electrons are
 on wrong
 side (of equation) / electrons
 should be on
 right hand side (of equation)
 M2 should be Cl_{2} | ALLOW chlorine is
 diatomic
 If correct ionic half-
 equation written,
 then score (2) | If both errors are
 identified but not
 corrected e.g. "it
 shouldn't be $+2 \mathrm{e}^{-}$
 and it shouldn't be
 2CI" then score max
 (1) |
| (e) | M1 the ions cannot flow/move | ALLOW zinc
 chloride solidifies | 2 |
| M2 so no loss/gain of electrons takes
 place
 at the electrodes | ALLOW ions not
 discharged at the
 electrodes | | |

Total for Question 15 = 8 marks

