www.xtrapapers.com

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Chemistry (4CH0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2018 Publications Code 4CH0_1C_1806_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	baseline 0 0 chromatography pape solvent spot of food colouring	Four correct scores Two correct scores 2 One correct scores 1	3
(b) (i)	 C (R) The only correct answer is C because food produces one spot so contains only one dy A is not correct because food colouring P p so does not contain only one dye B is not correct because food colouring Q p so does not contain only one dye D is not correct because food colouring S p so does not contain only one dye 	e produces four spots produces three spots	1
(ii)	 C (Q, R and S) The only correct answer is C because food S have one dye in common as they all prochas travelled the same distance A is not correct because P, Q and R do not spot which has travelled the same distance B is not correct because P, R and S do not spot which has travelled the same distance D is not correct because P, Q, R and S do not spot which has travelled the same distance 	duce one spot which all produce one all produce one all produce one mot all produce one	1

1 (b) (iii) M1 P	2
M2 largest number of/fou chromatogram)	spots (in the ALLOW "four dyes" ALLOW blobs / dots / marks / points for spots M2 DEP on M1

Total for Question 1 = 7 marks

Question number	Answer	Notes	Marks	
2 (a)	C (tap funnel)		1	
	The only correct answer is C because the apparatus containing the dilute hydrochloric acid is called a tap funnel			
	A is not correct because the appa dilute hydrochloric acid is not call	-		
	B is not correct because the appa dilute hydrochloric acid is not call			
	D is not correct because the appa dilute hydrochloric acid is not call	_		
(b)	$CaCO_3 + 2 HCI \rightarrow CaCl_2 + CO_2 + H_2O$	ACCEPT multiples	2	
	M1 H ₂ O			
	M2 correct balancing	M2 DEP on M1		
		Use of lower case letters, incorrect subscript / superscript, penalise M1 , but can score M2		
(c)	B (it turns limewater milky)		1	
	The only correct answer is B beca turns limewater milky	use carbon dioxide		
	A is not correct because carbon dioxide does not turn red litmus blue			
	C is not correct because carbon dioxide does not relight a glowing spill			
	D is not correct because carbon dioxide does not burn with a squeaky pop			

Question number	Answer	Notes	Marks
2 (d) (i)	it is more dense than air	IGNORE heavier than air IGNORE more dense than oxygen	1
(ii)	(gas) syringe / over water	ACCEPT description of collecting over water	1
(e)	any value between 4(.0) and 6.9		1
(f)	M1 (from) green	ACCEPT shades of green e.g. dark	2
	M2 (to) black	Award (1) for both colours correct but in wrong order	
(g)	any two from:		
	M1 does not support combustion	ALLOW does not burn / not flammable	2
	M2 more dense than air	ALLOW more dense than oxygen IGNORE heavier than air	
	M3 can be compressed (into a fire		
	extinguisher cylinder)		
	M4 does not conduct electricity	IGNORE references to reactivity / cost / not harmful	

Total for Question 2 = 11 marks

Question number	Answer	Notes	Marks
3 (a) (i)	Any two from:		
	M1 sodium gets smaller /disappears	ALLOW dissolves	2
	M2 sodium moves/darts around		
	M3 white trail		
	M4 melts/forms a ball		
	M5 litmus/solution/liquid turns blue	IGNORE floats fizzing/bubbles/ effervescence IGNORE references to flames / sparks / heat produced / explodes	
(ii)	2 Na(s) + 2 H ₂ O(I) → 2 NaOH(aq) + (1) H ₂ (g)	ALLOW multiples and fractions	
	M1 correct balancing		2
	M2 correct state symbols		
(b) (i)	(both) contain one electron in the outer(most)/valence shell	ALLOW same number of electrons in the outer(most) shell	1
(ii)	(most reactive) potassium/K		1
	sodium/Na		
	(least reactive) lithium/Li		
L		or Auestion 3 – 6	

Total for Question 3 = 6 marks

Question number	Answer	Notes	Marks
4 (a)	C (elements)		1
	The only correct answer is C because the found in the Periodic Table are elements	substances	
	A is not correct because the substances for Periodic Table are not alloys	ound in the	
	B is not correct because the substances for Periodic Table are not compounds	ound in the	
	D is not correct because the substances found in the Periodic Table are not mixtures		
(b)	A (atomic number)		1
	The only correct answer is A because the found in the Periodic Table (elements) are order of increasing atomic number		
	B is not correct because the substances for Periodic Table (elements) are not arrange increasing mass number		
	C is not correct because the substances for Periodic Table (elements) are not arrange increasing nucleon number		
	D is not correct because the substances for Periodic Table (elements) are not arrange increasing relative atomic mass		

Question number		An	swer		Notes	Marks
4 (c)	Gas helium neon argon krypton xenon	Symbol Ne	Boiling point 40 to 100	Reaction no reaction	REJECT NE/ne/nE IGNORE units	3
(d)	tungs M2 (beca of lose or sha OR	n does not sten/filame ause) argo <u>rons</u> / does are <u>electro</u> cen/filame	n has full s not (eas <u>ns</u>	ALLOW metal ALLOW argon is inert / unreactive ALLOW metal ALLOW	2	
					tungsten combusts in oxygen /is oxidised in oxygen	

Total for Question 4 = 7 marks

Question number	Answer	Notes	Marks
5 (a) (i)	(because) all of the acid/HCl is reacted/used up OR	Assume "it" refers to the acid	1
	(because) the cobalt(II) oxide is in excess	ACCEPT (because) cobalt(II) oxide is added until no more of it can react ALLOW (because) cobalt(II) oxide is added until no more of it can dissolve	
(b)	to increase the rate of reaction	ACCEPT to make reaction faster IGNORE references to dissolving the cobalt(II) oxide IGNORE references to increases (kinetic) energy / particles move more/faster	1
(c)	glass does not react with acid/solution OR	IGNORE glass is unreactive	1
	metal may/does react with acid/solution	ALLOW so no other/unwanted metal ions form ALLOW glass is not a good (thermal) conductor <u>and</u> so less likely to burn yourself (or reverse argument for metal)	

Question number	Answer	Notes	Marks
5 (d)	solid stops disappearing / solid settles/left over	ALLOW cobalt(II) oxide/it for solid ALLOW dissolving for disappearing IGNORE references to fizzing/effervescence/gas given off	1
(e)	the (soluble) impurity will also be present with the (cobalt chloride) crystals	ALLOW the (soluble) impurity remains / won't be removed by filtration/in Step 5	1
(f)	 IGNORE any initial steps that try to remove impurities e.g. filter / wash M1 heat/boil (the filtrate / evaporating basin) 	ALLOW evaporate	5
	M2 until reach crystallisation point / until solution is concentrated/ saturated / until crystals form on the end of a glass rod	ALLOW until most/some of the water has evaporated If solution is <u>heated to</u> <u>evaporate all water</u> at this stage see METHOD 2 below.	
	M3 leave the solution (to cool) and filter (to remove the crystals)	If M2 is scored but the saturated solution is then <u>left to evaporate</u> <u>the remaining water</u> then M3 cannot be awarded, but M4 & M5 can be awarded	
	M4 wash the crystals (with a small amount of deionised water)		
	M5 dry the crystals on filter/tissue paper / in a (warm) oven	IGNORE just "dry it" ALLOW leave (the crystals) to dry REJECT hot oven or any method of direct heating (eg Bunsen burner)	

5	(f)		METHOD 2		
			If the filtrate is <u>heated to</u> <u>evaporate all water</u> :		
			M1 heat/boil (the filtrate / evaporating basin)	ALLOW evaporate	
			M4 wash the crystals (with a small amount of deionised water)		
			M5 dry the crystals on filter/tissue paper / in a (warm) oven	IGNORE just "dry it" ALLOW leave to dry REJECT hot oven or any method of direct heating (eg Bunsen burner)	
				M5 DEP on M4 <u>in</u> <u>METHOD 2 only</u>	
	(g)	(i)	$\begin{array}{r} \text{CoCl}_2.2\text{H}_2\text{O} + 4 \text{H}_2\text{O} \rightarrow \\ \text{CoCl}_2.6\text{H}_2\text{O} \end{array}$		1
		(ii)	B (dehydration)		1
			The only correct answer is B be solid CoCl ₂ .6H ₂ O is heated to find is losing water which is dehydrodiated to find the solution of the solu	rom the blue solid $CoCl_2$ it	
			A is not correct because when the pink solid CoCl ₂ .6H ₂ O is heated to from the blue solid CoCl ₂ it is losing water which is not crystallisation		
			C is not correct because when the pink solid $CoCl_2.6H_2O$ is heated to from the blue solid $CoCl_2$ it is losing water which is not hydration		
			D is not correct because when the pink solid $CoCl_2.6H_2O$ is heated to from the blue solid $CoCl_2$ it is losing water which is not a redox reaction		
			-	Total for Question 5 = 12	marks

Total for Question 5 = 12 marks

Question number	Answer	Notes	Marks
6 (a)	ammonia / NH ₃	If name and formula given, both must be correct	1
(b)	K+		1
(c) (i)	M1 (test 3A) no carbonate (ion) present	ACCEPT CO ₃ ²⁻ ALLOW hydrogencarbonate/ HCO ₃ ⁻	2
	M2 (test 3B) no halide (ion) present	ACCEPT no chloride, bromide or iodide (ion) present (all three halides must be mentioned) ALLOW one halide if result is given e.g. no chloride ions present because a white precipitate would form	
(ii)	sulfate / SO4 ²⁻	If name and formula given both must be correct	1
	Το	tal for Question 6 = 5	marks

	Quest numb		Answer	Notes	Marks
7	(a)	(i)	(it has) gained oxygen / oxygen has been added (to it)	ACCEPT oxidation number has increased / changed from -2 to +4 ALLOW gained O / O has been added IGNORE references to electrons	1
		(ii)	$Sb_2O_4 + 2C \rightarrow 2Sb + 2CO_2$		1

Question number	Answer	Notes	Marks
7 (b) (i)	Bi ³⁺		1
(ii)	M1 strong electrostatic forces/attractions between the (oppositely- charged) ions	ACCEPT strong ionic bonding/bonds / many ionic bonds IGNORE giant ionic structure / lattice	2
	M2 large amount of (thermal / heat) <u>energy</u> required to overcome these	ACCEPT large amount of (thermal/heat) <u>energy</u> required to break the bonds	
	forces/attractions	IGNORE more energy required	
		M2 DEP on M1 or near miss e.g. "strong bonds"	
		If reference to intermolecular forces /metallic/covalent bonding, then score 0 out of 2	
(iii)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	M1 H ₂ O as only product not containing Bi		2
	M2 equation fully correct i.e. formula of BiCl ₃ and balanced	ACCEPT multiples and halves	
		M2 DEP on M1	
		Total for Question 7 = 7	

Question number	Answer	Notes	Marks
8 (a) (i)	Volume of gas 30 10 0 0 1 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 4 4 4 4 4 4 4 4 4		
	M1 and M2 all points plotted correctly (± half a square)	IGNORE plotting of (0, 0).	2
		Deduct one mark for each point plotted incorrectly.	
(ii)	suitable curve drawn, avoiding the anomalous point	ALLOW curve drawn ± half a square through other points	1

Question number	Answer	Notes	Marks
8 (b) (i)	measured volume of gas later (than 2 minutes)	ALLOW misread the syringe / syringe not read at eye level	1
(ii)	Volume of gas 30 10 10 10 12 3 4 10 10 10 10 10 10 10 10		
	M1 value read correctly (± 1cm ³) from candidate's graph		2
	M2 vertical line drawn at 2 min intersecting curve	ALLOW a cross on the curve at 2 mins	
	OR horizontal line drawn from vertical axis intersecting curve at 2 min		

Question number	Answer	Notes	Marks
8 (c)	M1 the reaction has finished	ALLOW references to no more gas given off	2
	M2 because <u>all</u> the acid has reacted / the acid has been used up	IGNORE the reactants have been used up IGNORE the zinc has reacted IGNORE the zinc is in excess REJECT <u>all</u> of the zinc has reacted / the zinc has been used up	
(d) (i)	the gradient/slope of the curve decreases	ACCEPT the curve becomes less steep ALLOW the curve levels off	1
(ii)	M1 fewer particles (of acid/zinc to react)	ALLOW concentration of <u>acid</u> decreases	2
	M2 fewer (successful) collisions (between particles) per second	ACCEPT less frequent (successful) collisions	
		IGNORE references to less chance of collision	
		IGNORE references to wrong type of particles eg molecules	
		Any reference to particles losing energy / moving more slowly scores 0 out of 2.	

Total for Question 8 = 11 marks

Question number	Answer	Notes	Marks
9	(magnesium):	IGNORE any references to carrying charge throughout the question	
	M1 delocalised electrons	ALLOW sea of electrons IGNORE free electrons	6
	M2 are able to flow/move (through the structure)	ALLOW are mobile M2 DEP on mention of electrons in M1	
	(solid MgCl₂):	Any mention of <u>moving</u> ions / atoms /nuclei / protons loses M1 & M2	
	M3 (positive and negative) ions	IGNORE refs to electrons	
	M4 are in fixed positions /can only vibrate / cannot move (aqueous MgCl ₂):	M4 DEP on M3	
	M5 (positive and negative) ions	REJECT refs to electrons	
	M6 can move/flow (to electrodes of opposite charge)	M6 DEP on M5	

Total for Question 9 = 6 marks

Question number	Answer	Notes	Marks
10 (a)	M1 the (mean/average) energy of the molecules/particles increases	ACCEPT molecules/ particles gain energy ACCEPT the (mean/average) speed/velocity of the molecules increases ACCEPT molecules move faster	2
	 M2 molecules/particles/they escape (from the liquid) OR 	IGNORE evaporate	
	intermolecular forces are broken AND the molecules/particles move further apart		
(b)	Br ₂ + H ₂ O → HBr + HBrO	ALLOW reactants in either order ALLOW products in either order	1

Question number	Answer	Notes	Marks
10 (c) (i)	M1 $n[MgBr_2.6H_2O] = 0.125 (mol)$		3
	M2 mass of MgBr ₂ .6H ₂ O = 0.125×292		
	M3 = 36.5 (g)	M3 DEP on valid working in M2	
	OR		
	M1 mass of MgCO ₃ = 0.125×84 OR 10.5 (g)		
	M2 84 (g) of MgCO ₃ give 292 (g) of MgBr ₂ .6H ₂ O		
	OR mass of MgBr ₂ .6H ₂ O = (292 \div 84) × 10.5 (g)		
	M3 mass of MgBr ₂ .6H ₂ O = 36.5 (g)	M3 DEP on valid working in M2	
	OR		
	M1 mass of MgBr ₂ = 0.125×184 OR 23 (g)		
	M2 mass of $6H_2O = 0.125 \times 6 \times 18$ OR 13.5 (g)		
	M3 23 + 13.5 = 36.5 (g)		
	OR		
	36.5 ÷ 292 = 0.125 scores (3)		

Question number	Answer	Notes	Marks
10 (c) (ii)	any two from:		2
	M1 solution not left for long enough	ALLOW crystallisation was incomplete / some crystals remain in solution	
	M2 magnesium carbonate is impure		
	M3 some magnesium carbonate did not react	ALLOW reaction (between carbonate and acid) did not go to completion	
	M4 some of the product was lost during Transfer between pieces of apparatus	IGNORE references to spillage	
	M5 (hydrated magnesium bromide) loses some water of crystallisation	ALLOW magnesium bromide is not fully hydrated	
	M6 some of the product dissolves when the crystals are washed	or Question 10 - 9	

Total for Question 10 = 8 marks

Question	Answer	Notes	Marks
number			
11	M1 powder/crush the malachite (using the pestle and mortar)	ALLOW powder/crush the ore	6
	 M2 add the malachite/powder to dilute sulfuric acid (in a beaker) OR add dilute sulfuric acid to the malachite (in a beaker) 	ACCEPT mix the powder with dilute sulfuric acid (in a beaker)	
	M3 filter (using filter funnel and paper)	ALLOW decant	
	M4 add magnesium powder to the filtrate/solution/copper sulfate		
	M5 method to collect/obtain/ remove the residue/copper (using filter funnel and paper)		
	M6 reference to appropriate use of at least two pieces of apparatus	IGNORE any later steps e.g. washing / evaporation	

11	OR	
	If malachite and magnesium are both added to the acid at the same time, then:	
	M1 powder/crush the malachite (using the pestle and mortar)	
	M2 add the malachite/powder to dilute sulfuric acid and add the magnesium (in a beaker)	
	M3 filter and collect/obtain the residue/copper (using filter funnel and paper)	IGNORE any later steps e.g. washing / evaporation
	M4 reference to appropriate use of at least two pieces of apparatus	

Total for Question 11 = 6 marks

Question number	Answer	Notes	Marks
12 (a)	A (boiling point)		1
	The only correct answer is A because the property of hydrocarbons used to separate crude oil into fractions is their boiling point		
	B is not correct because the used to separate crude oil in chemical reactivity		
	C is not correct because the used to separate crude oil in density		
	D is not correct because the property of hydrocarbons used to separate crude oil into fractions is not their melting point		
(b) (i)	camping gas / bottled gas / calor gas	ALLOW (fuel for) stoves / (fuel for) cooking / (fuel for) heating IGNORE fuel by itself	1
(ii)	<u>fuel</u> for (aero)planes	ACCEPT <u>fuel</u> for jets/jet engines ACCEPT <u>fuel</u> for heating/lamps ALLOW <u>paraffin</u> heaters/lamps ALLOW <u>kerosene</u> heaters/lamps	1
(iii)	bitumen		1

Question number	Answer	Notes	Marks
12 (c) (i)	silica / alumina	ACCEPT SiO ₂ / Al ₂ O ₃ ACCEPT silicon dioxide / aluminium oxide ACCEPT aluminosilicate(s) ACCEPT zeolite(s)	1
(ii)	600—700 (°C)	ACCEPT any temperature or range of temperatures between 600 and 700 (°C) inclusive	1
(iii)	$C_{14}H_{30} \rightarrow C_{2}H_{4} + C_{12}H_{26}$		1
(iv)	H = C = C H	IGNORE bond angles	1
(v)	poly(ethene) / polyethene / polythene	ALLOW polyethylene	1
(vi)	M1 it is inert	ALLOW unreactive	2
	M2 (so) does not biodegrade	ALLOW description of non- biodegradable e.g. does not decompose naturally / is not broken down by microorganisms	
		IGNORE references to burning producing harmful gases Total for Ouestion 12 = 1	

Total for Question 12 = 11 marks

Question number	Answer				Notes	Marks
13 (a)		Initial	After 1 min	Increase	Penalise missing trailing zeroes and/or extra zeroes once	3
	expt 1	16.0	19.0	3.0	only e.g. 16 / 16.00	
	expt 2	16.0	21.0	5.0	e.g. 10 / 10.00	
	expt 3	16.0	27.5	11.5		
	Mark "	ark for ea Increase and after	" columi	-		
(b)	M1 the reaction occurs more quickly			s more	ALLOW increased frequency of collisions	2
	energy is more			v/thermal e water	ACCEPT the water/liquid is heated more quickly ALLOW more heat energy/thermal energy produced in same time period Max (1) for "more reactions occur so more heat produced"	

Question number	Answer	Notes	Marks
13 (c) (i)	M1 stays the same / does not change		2
	M2 because same temperature AND same surface area/size pieces of zinc OR	M2 DEP on M1	
	because same concentration of acid		
(ii)	M1 greater (temperature increase)		3
	M2 same amount of heat energy/thermal energy transferred/produced	ALLOW "heat" or "energy" in place of "heat energy"	
	M3 (but) smaller volume/amount of solution/acid to transfer energy to	ALLOW (but) smaller volume/amount of solution/acid to heat up	
	<u> </u>	 for Ouestien 12 – 10	

Total for Question 13 = 10 marks

M1 0.01740 \times 0.0200 OR <u>17.4(0) \times 0.0200</u>		2
1000		
M2 3.48 × 10 ⁻⁴ / 0.000348 (mol)	ACCEPT 3.5×10^{-4}	
	ALLOW errors in powers of 10 in converting cm ³ to dm ³ e.g. 0.348 / 0.35 / 348 / 350 for M2	
M2 from (a) \times 5 evaluated correctly and quoted to at least two significant figures	If (a) was correct, this should be 1.74×10^{-3} / 0.00174 (mol) ACCEPT 0.0017	1
answer from (b) \times 56.0 evaluated correctly and quoted to at least two significant figures	If (b) was correct, this should be 0.0974 (g)	1
	ACCEPT 0.09744 / 0.097	
answer from (c) divided by 0.298 and then × 100 and evaluated correctly and quoted to at least two significant figures	If (c) was correct, this should be 32.7 (%)	1
	ACCEPT 33 / 32.68 / 32.6 from 0.097(g)	

Total for Question 14 = 5 marks

Question number	Answer	Notes	Marks	
15 (a)	M1 break down/decomposition of a compound	ALLOW electrolyte/ substance for compound IGNORE separation	2	
	M2 using electricity	ALLOW using dc / direct current		
(b)	(graphite) will not react with chlorine	ALLOW because it is (an) inert (electrode) ALLOW graphite does not react with zinc chloride IGNORE references to graphite being a better conductor IGNORE references to cost	1	
	OR			
	magnesium will react with chlorine	ALLOW magnesium reacts with zinc chloride ALLOW magnesium will displace zinc		
(c)	B (both products are elements)			
	The only correct answer is B because when molten zinc chloride is electrolysed both products (zinc and chlorine) are elements			
	A is not correct because the pale green substance is chlorine not chloride			
	${\bf C}$ is not correct because the pale green substance forms at the positive electrode not the negative electrode			
	D is not correct because the shiny grey solid is zinc not zinc chloride			

Question number	Answer	Notes	Marks
15 (d)	M1 should be — 2e ⁻ / electrons are on wrong side (of equation) / electrons should be on right hand side (of equation)		2
	M2 should be Cl ₂	ALLOW chlorine is diatomic	
		If correct ionic half- equation written, then score (2)	
		If <u>both</u> errors are identified but not corrected e.g. "it shouldn't be + 2e ⁻ <u>and</u> it shouldn't be 2Cl" then score max (1)	
(e)	M1 the ions cannot flow/move	ALLOW zinc chloride solidifies	2
	M2 so no loss/gain of electrons takes place at the electrodes	ALLOW ions not discharged at the electrodes	
	Tota	I for Question 15 = 8	marks

www.xtrapapers.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom