

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International GCSE in Mathematics B Paper 1 (4MB0/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2014 Publications Code UG039435 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - o M marks: method marks
 - o A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- indep independent
- o eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Question Number	Answer	Notes	Marks
1	$\frac{4(x+3)}{x(x+3)}$	M1	
	Note: Award M1 for the correct factorisation of either the numerator or denominator		
	$\frac{4}{x}$	A1 2	2
2	$117\pi = \pi r^2 \times 13 \tag{o.e}$	M1	
	Note: Allow a numerical value of π (3.14 or better)		
	$r = 3 \mathrm{cm} (\mathrm{cao})$	A1 2	2
3	$\frac{625}{1000}$ OR 0.625	M1	
	Note: Accept any equivalent correct fraction.		
	$\frac{5}{8}$	A1 2	2
	Note: No isw if the candidate goes on after the correct answer		
4	$\frac{360}{24} \text{ or } 180 - \frac{180 \times (24 - 2)}{24}$	M1	
	Note: $180 - \frac{360}{24}$ earns M0 unless recovered		
	15°	A1 2	2
_			
5	2x = x + 3 (remove denom.)	M1	

	Note: $6 = x + 3$ earns M1			
	(x =) 3	A1	2	2
	Notes: 1. Answer only seen – full marks 2. Correct answer seen but working wrong, award M0,A0			
6(a)	0.0177 or 1.77×10^{-2}	B1	1	
6(b)	0.018	B1	1	2
7				
	B			
	$180^{\circ} + 48^{\circ}$ or $360^{\circ} - (180^{\circ} - 48^{\circ})$			
	OR diagram indicating reflex angle $\angle NAB$			
	Note: Where a diagram is drawn, we need to clearly see a numerical value assigned to the reflex angle $\angle NAB$ (It does not need to be simplified)	M1		
	228° OR S48W	A1	2	2
8	a^4 as numerator or 4 as denominator	M1		

	Note: 1. Ignore any coefficient before a^4 for this M mark.		
	2. $a^{6\times\frac{2}{3}}$ does not earn the M mark (yet)		
	$\frac{a^4}{4}$	A1 2	2
	Notes: 1. Do not isw.		
	2. $\frac{a^4}{2^2}$ earns M1, A0 (unless continues to required solution)		
9	$\boxed{2(n+1)-1} - [2n-1] \qquad (o.e)$		
	OR Any two correct consecutive numerical terms	M1	
	Notes: 1. (o.e.) $(2n+1)-(2n-1)$ 2. Award M1 for $2n-1 = a + (n-1)d$ and comparing coefficients		
	difference = ± 2	A1 2	2
10	Two of $30 = 5 \ge 6$, $36 = 6 \ge 6$, $138 = 23 \ge 6$ OR Two of prime factors, factor trees, compound division or list of factors	B1	
	HCF = 6	B1	2
	Note: Award full marks for a correct answer only seen		
11	$x^2 + bx - ax - ab = 3bx \qquad (expand)$	M1	
	$x^{2} + bx - 3bx = ax + ab$ (isol. terms in <i>a</i>)	M1 (DEP)	

OR			
$x - a = \frac{3bx}{x + b}$	M1		
$a = x - \frac{3bx}{x+b}$ or $-a = \frac{3bx}{x+b} - x$	M1 (DE	EP)	
OR			
3bx + a(x+b) = x(x+b)	M1		
a(x+b) = x(x+b) - 3bx	M1 (DE	EP)	
$a = \frac{x^2 - 2bx}{x+b} (\text{o.e.})$	A1	3	3
Note: 1. An example of (o.e.) $a = -\frac{x(2b-x)}{x+b}$ 2. $3bx-bx$ must be simplified before the final A mark can be awarded			
3. Do not isw			

12	$\angle CDA = 70^{\circ}$ (Cyclic quad.)	B1		
	$\therefore \angle COD = 40^{\circ}$ (Isos. Triangle)	B1		
	Note: For 'isosceles triangle' $CO = OD$ and triangle sufficient for reason			
	OR			
	$\angle CBD = 20^{\circ} \ (\angle \text{ in semi-circle for } \angle ABD \)$	B1		
	$\therefore \angle COD = 40^{\circ} \text{ (angle at centre)}$	B1		
	Both of above reasons	B1	3	3
	 Notes: 1. Accept the required angle (<i>COD</i>) marked on the diagram for answer 2. Reasoning(s) must be consistent with a correctly calculated angle 3. Unless the candidate starts again, an incorrectly calculated angle (because of wrong reasoning) condemns further work. 4. Opp angle of a quadrilateral is not a sufficient reason. 5. Do not accept 'angle sum of a triangle' as a reason unless it is used with <i>CO</i> = <i>OD</i> 6. Accept a single letter notation (<i>D</i>) for ∠<i>CDA</i> 			
	SC: One reason and correct answer, B1 B1 B0 No reasons and correct answer B1 B0 B0			
13	One of $\sqrt{245}$ or $\sqrt{45}$ rewritten as $\sqrt{5 \times 7 \times 7}$ or $\sqrt{5 \times 3 \times 3}$			
	(oe, eg $7\sqrt{5}$ or $3\sqrt{5}$)	M1		
	$7\sqrt{5}-3\sqrt{5}$	M1		
	Note: Condone $7\sqrt{5} - 3\sqrt{5} = 7 - 3\sqrt{5}$			
	$4\sqrt{5}$	A1	3	3
	Note: The A mark is dependent on the first M mark.			
14	$0.59 \times \pi \times 110 \text{ m/min} \text{OR} 59 \times \pi \times 110 \text{ cm/min}$			

	(ie distance travelled in 1 min)	M1	
	"0.59 × π × 110 " × $\frac{60}{1000}$ OR "59 × π × 110" × $\frac{60}{100000}$ ie $\begin{cases} \text{conv to km} \\ \text{conv to hrs} \end{cases}$	M1 (DEP)	
	12.2 km (awrt) SC: 3.89(or better) award M0, M1, A0	A1 3	3
15	$280 = \left(\frac{h}{9}\right)^2 \times 70 \text{ (o.e.)} \qquad \qquad \sqrt{\left(\frac{280}{70}\right)} \text{ or } \sqrt{4} \text{ or } \frac{9.44}{4.72} \text{ seen}$	M1	
	$\therefore h = 9\sqrt{\frac{280}{70}}$	M1 (DEP)	
	h = 18 cm (awrt) Note: If volumes are compared and the incorrect formula for the volume of a cone is used, a maximum of the first M mark can be awarded.	A1 3	3

16	$9 = k \times 2^3 \qquad (\text{o.e})$		M1		
	$k = \frac{9}{8}, 1.125$	$9x^3 = 8 \times 72$ (or better)	A1		
	Notes: 1. $k = 1.13$ (or better) for A mark 2. If $9 \times k = 2^3$, award M1 $k = \frac{8}{9}$ or 0.88 award A1				
	$x = \sqrt[3]{\frac{72}{"\left(\frac{9}{8}\right)"}} (\text{o.e: (taking cube root))}$	$x = \sqrt[3]{\frac{8 \times 72}{9}}$	M1 (DEP)	
	x = 4		A1	4	4
17	Balancing either <i>x</i> or <i>y</i> in the two equations	isolating x or y e.g. $x = 15-3y$ or $y = 2x-2$	M1		
	Correctly deciding whether to add or subtract	subst expression for x or y to obtain an equation in one unknown	M1 (DEP)	
	Note: Allow a total of 1 slip in both M marks.		-		
	x = 3		A1		
	$\begin{array}{c} x = 5 \\ y = 4 \end{array}$		A1 A1	4	4
		e only correct answer with no working seen earns		-	
18(a)	40		B1		

60			B1 2	
0.5			B1	
7			B1 2	4
Note: Allow a tolerance	the of $\frac{1}{2}$ small square on the graph for	or B marks in part (b)		
3			B1 1	
5×"3" (o.e.)	$\frac{1}{6}(9 + "3" + x) = 3$	$\frac{5}{6}(9 + "3" + x) = 9 + x$	M1	
"15" – 9	9 + "3" + x = 18	$45 + 5 \times "3" + 5x = 54 + 6x$	M1 (DEP)	
6			A1 ft 3	4
	0.5 7 Note: Allow a tolerance 3 5×"3" (o.e.) "15" – 9	0.5 7 Note: Allow a tolerance of $\frac{1}{2}$ small square on the graph for 3 $5 \times "3"$ (o.e.) $\frac{1}{6}(9 + "3" + x) = 3$ "15" - 9 $9 + "3" + x = 18$	0.5 7 Note: Allow a tolerance of $\frac{1}{2}$ small square on the graph for B marks in part (b) 3 $5 \times "3"$ (o.e.) $\frac{1}{6}(9 + "3" + x) = 3$ $\frac{5}{6}(9 + "3" + x) = 9 + x$ "15" - 9 $9 + "3" + x = 18$ $45 + 5 \times "3" + 5x = 54 + 6x$	0.5 B1 7 B1 Note: Allow a tolerance of $\frac{1}{2}$ small square on the graph for B marks in part (b) 3 B1 $5 \times "3"$ (o.e.) $\frac{1}{6}(9 + "3" + x) = 3$ $\frac{5}{6}(9 + "3" + x) = 9 + x$ M1 "15" - 9 $9 + "3" + x = 18$ $45 + 5 \times "3" + 5x = 54 + 6x$ M1 (DEP)

20	$\frac{-(-3)\pm\sqrt{(-3)^2-4\times4\times(-2)}}{2\times4}$ Note: Accept -3 ² in discriminant (ie brackets missing) $\left(x-\frac{3}{8}\right)^2 = \frac{9}{64} + \frac{1}{2}$	M1	
	$\sqrt{41}$ OR 6.40 (or better)	B1	
	Note: This is an independent B mark and can be earned from previous incorrect working		
	1.18, -0.425	A1, A1 4	4
	 Note: 1. Accept answers which round to the required answers (no penalty for failing to correct) 2. Overcorrecting will always be penalised 3. Unrounded correct answers seen in the body of the script, then over-corrected, award corresponding A marks. 		
	SC: The candidate may try and factorise the given quadratic. The M mark only is available as follows: You need to multiply out their incorrect bracketed terms. If the resultant quadratic gives two of their three terms of $ 4x^2 - 3x - 2 $ then award the M mark.		

21(a)	Notes: 1. $38 - x$ can be anywhere inside the crescent to the left 2. $27 - x$ can be anywhere inside the crescent to the left 3. The numerical value 5 can be anywhere outside the two circles 4. Ignore any other values or expressions in x that you see	B1 1	
21(b)	"(38-x)"+x+"(27-x)"+5=50 Note: 38+27+x+5=50 can earn method here	M1	
	x = 20	A1 2	
21(c)	$Prob = \frac{38 - "20"}{50}$ Notes: 1. "20" must be a positive value for method to be earned	M1	
	2. If this fraction is combined with another fraction then method is lost $\frac{18}{50}$ (o.e.), 0.36, 36%	A1 ft 2	5

22(a)	$\overrightarrow{AB} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	B1	1	
	Note: Penalise $\left(\frac{1}{2}\right)$			
22(b)	$\overrightarrow{OC} = 2"\binom{1}{2}" + \binom{1}{1} \left(= \binom{3}{5} \right)$	M1		
	(3, 5)	A1	2	
22(c)	$\left(\overrightarrow{AC} = 2 \times "\overrightarrow{AB}" = \begin{pmatrix} 2\\ 4 \end{pmatrix}\right)$			
	$\sqrt{2"2"^2 + 4"^2}$ $\sqrt{3"2"^2 + 5"^2}$	M1		
	$\left \overrightarrow{AC}\right = 4.47 \text{ (awrt)}$	A1	2	5
23(a)	Penalise ncc ONCE only in the question			
25(a)	$\cos 15 = \frac{11}{AB} \text{ (o.e.)}$	M1		
	Note: Equivalent methods may involve sin 15, sine rule, tangent + Pythagoras The M mark is awarded for any correct trig/Pythagorean statement which involves the side AB. (It does not have to be evaluated).			
	11.39 -> 11.4 cm	A1	2	

23(b)	AC = 11 x tan 15 (oe) (=2.947)	$AC = \sqrt{"11.39"^2 - 11^2} (= 2.955)$	$\angle DCB + \angle BDC = 165^{\circ}$	M1		
	<i>DB</i> = "11.39"–"2.947"	<i>DB</i> = "11.39"–"2.995"	$DB = \frac{11 \times \sin"37.5"}{\sin"127.5"}$	M1 (D	EP)	
	Accept any of the following answ	ers: 8.41, 8.44 or 8.45		A1	3	5
24(a)	Construction arcs Note: the required number of con	npass construction arcs are require	ed	M1		
	Perpendicular bisector drawn into Notes: 1. For the A mark, there the triangle. 2. Must be a continuous	ersecting <i>BC</i> and also <i>AC</i> should be no daylight between the		A1	2	
24(b)	Construction arcs Note: the required number of con	· · · · · · · · · · · · · · · · · · ·	ed	M1		
	Angle bisector drawn (from <i>B</i> and Notes: 1. For the A mark, there the triangle .	I intersecting <i>AC</i>) should be no daylight between th yn does not necessarily mean that i lines).	e line and the overlay within	A1	2	
24(c)	Region \mathbf{R} within ΔABC shaded aNote: The shaded area must be w	nd labelled.	the left of the perpendicular	B1 ft	1	5

25(a)	$\frac{\pounds 1}{2.5}$		M1		
	£0.40		A1	2	
	Note: Accept £0.4 but do not accept 40p				
25(b)	One of 1.2×2.5 kg or $1.11 \times \pounds 1$	One of "0.40"×1.11 or "0.40"÷1.2	M1		
		Note: "0.40" < £1.00			
	$\frac{\pounds 1.11}{3}$	$\frac{"0.40" \times 1.11}{1.2}$	M1 (I	DEP)	
	£0.37		A1	3	5
26(a)	$2 \times (-3)^3 + 13 \times (-3)^2 + 27 \times (-3) + 18$	Dividing the cubic by $(x+3)$ and arriving at a quotient of $2x^2 + 7x$	M1		
		Note: Allow synthetic division method -3 21327180-6-21-1827			
	= 0	A quotient of $2x^2 + 7x + 6$	A1	2	
	Note: If we see four numerical values they must be $-54+117-81+18$. If any part of this Expression is incorrect then A0 Stating = 0 without numerical values earns the A mark	Note: Using the synthetic division method, the entries in the fourth row must be 2 7 6			

26(b)	$2x^2 + 7x$		-3	2	13	27	18	M1		
				0	-6	-21	-18			
				2	7					
	$2x^2 + 7x + 6$						A1			
	Note: These two marks can be earned again here if shown in part (a)									
	Factorising a trinomial quadratic							M1 (IN		
	Note: If the candidates two bracketed terms are not the required terms they can still earn the M mark here.									
	You need to multiply out their incorrect bracketed terms. If the resultant quadratic gives two of their three terms of $ 2x^2 + 7x + 6 $ then award the M mark.									
	(x+3)(2x+3)(x+2)							A1	4	6
	Notes: 1. Allow the A mark for $(x+3)(2x+3)(x+2) = 0$ but, if the candidate goes on to solve									
	their correct equation, they lose the last A mark.									
	2. For this mark, we will allow a missing trailing bracket e.g. $(x+3)(2x+3)(x+2)(x+2)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3$									
L										

27(b)	$\frac{3}{4} \times "\frac{2}{5}"$ (o.e.)		M1		
	Note: This probability pair must not be embedded				
	$\frac{6}{20}, \frac{3}{10}, 0.3, 30\%$		A1 2		
27(c)	$\frac{6}{20}, \frac{3}{10}, 0.3, 30\%$ $\frac{(3)}{4} \times (2)^{2} \times (3)^{2} \times ($				
	two "correct" products added from their diagram	$\frac{1}{4} \times \frac{2}{5}$ $1 - \frac{1}{4} \times \frac{2}{5}$	M1		
	all three "correct" products added from their diagram	$1 - \frac{1}{4} \times \frac{2}{5}$	M1 (DEP)		
	$\frac{18}{20}, \frac{9}{10}, 0.9, 90\%$		A1 3	7	
28(a)	$y = x^{2} + (10 - x) (20 - x)$	$y = 20 \times 10 - x(10 - x) - x(20 - x)$	M1		
	$y = 2x^2 - 30x + 200$ (c.c)		A1 2		
	Notes: 1. Algebraic errors in the candidate's w 2. If " $y =$ " does not appear in the can				
28(b)	$\frac{dy}{dx} = 4x - 30$ (1 term correctly differentiated from their y)				
	"4x - 30" = 0				
	Note: Must be a linear equation in x for method.				
	x = 7.5		A1 3		
28(c)	$2 \times "7.5"^2 - 30 \times 7.5 + 200$ (subst.)	$(10 - 7.5) \times (20 - 7.5) + 7.5 \times 7.5$	M1		
	87.5 cm ²		A1 2	7	
	TOTAL 100 MARKS				

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE