| Write your name here Surname | Other r | names | |---|---------------|-------------------------| | Pearson Edexcel
Level 3 Certificate | Centre Number | Candidate Number | | Mathema Paper 1: Comprehe | | ontext | | Wednesday 17 May 2017 – Time: 1 hour 40 minutes | Morning | Paper Reference 7MC0/01 | | You must have: Ruler graduate protractor, pair of compasses, p | | | ## **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** guestions. - Answer the questions in the spaces provided there may be more space than you need. - Calculators may be used. ## Information - The total mark for this paper is 60 - The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Keep an eye on the time. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ ## **SECTION A** ## Answer ALL questions. Write your answers in the spaces provided. ## **ENERGY** Refer to data source A in the source booklet. 1 The data for the percentage of energy produced from renewable sources, from Table 1 in the source booklet, is shown in the box plot below. The table below gives the information from Table 2 in the source booklet, ordered by the percentage of energy produced from renewable sources. | Sub-Saharan African Country | Percentage of energy produced from renewable sources | Total energy consumption (petajoules) | |------------------------------|--|---------------------------------------| | South Africa | 16.9 | 2777 | | Ghana | 49.5 | 284 | | Benin | 50.6 | 145 | | Guinea | 74.1 | 139 | | Cote d'Ivoire | 74.4 | 291 | | Cameroon | 78.1 | 256 | | Kenya | 78.5 | 556 | | Burkina Faso | 79.1 | 137 | | Nigeria | 86.5 | 4829 | | Tanzania | 88.2 | 800 | | Zambia | 88.2 | 292 | | Mozambique | 88.4 | 312 | | Uganda | 90.0 | 403 | | Ethiopia | 93.5 | 1547 | | Democratic Republic of Congo | 96.0 | 825 | An outlier is defined as any value that is either greater than the upper quartile $+ (1.5 \times interquartile range)$ - or less than the lower quartile $(1.5 \times interquartile range)$ - (a) On the grid opposite, draw a box plot to show the information for the percentage of energy produced from renewable sources for the 15 countries given in the table above. | You must | show | any | outliers | on | your | box | plot, | along | with | calcula | tions | to i | identify | these | outliers | |----------|------|-----|----------|----|------|-----|-------|-------|------|---------|-------|------|----------|-------|----------| | | | | | | | | | | | | | | | (| 6) | |
 | | |------|--| | | | |
 |
 | | 2 The table below shows some of the 5-point moving averages for the cost per barrel of oil between 2004 and 2014. | Year | Cost per barrel (\$) | 5-point moving average | |------|----------------------|------------------------| | 2004 | 47.96 | | | 2005 | 66.09 | | | 2006 | 76.50 | 76.03 | | 2007 | 82.65 | 80.05 | | 2008 | 106.94 | 84.09 | | 2009 | 68.05 | 92.21 | | 2010 | 86.31 | 98.71 | | 2011 | 117.09 | 99.40 | | 2012 | 115.14 | | | 2013 | 110.42 | | | 2014 | 98.95 | | | (a) Calculate the missing 5-point moving average. | (2) | |---|-----| The costs of a barrel of oil for 2004 to 2014 are shown on the grid below. (b) On the same grid, plot the moving averages. (2) (c) Predict the year in which the price of a barrel of oil will first reach \$150 Make your method clear. (2) (d) Comment on the reliability of your prediction in part (c). (1) (Total for Question 2 is 7 marks) | Refer to data source B in the source booklet. | | |--|-----| | Assume that, after 2014, oil consumption continues at the same rate as for 2014. | | | 3 (a) During which year will the total proven reserves of oil known in 2014 run out? | (5) | Sahel wants to make a more accurate prediction for oil consumption after 2014. | | | | A | В | C | |----|------|--|--------------------------------------| | 1 | Year | Oil consumption (1000 barrels per day) | Percentage change from previous year | | 2 | 2004 | 83 107 | | | 3 | 2005 | 84 411 | 1.57 | | 4 | 2006 | 85 328 | 1.09 | | 5 | 2007 | 86 741 | 1.66 | | 6 | 2008 | 86 115 | -0.72 | | 7 | 2009 | 85 066 | -1.22 | | 8 | 2010 | 87 867 | 3.29 | | 9 | 2011 | 88 974 | 1.26 | | 10 | 2012 | 89 846 | 0.98 | | 11 | 2013 | 91 243 | 1.56 | | 12 | 2014 | 92 086 | 0.92 | He sets up a spreadsheet to do this. Sahel uses a formula to calculate the percentage changes from year to year. Here are four formulas that he considered to go in cell C3. - \bullet = (B3 B2)/B2/100 - \bullet = (B3 B2)/B2*100 - \bullet = (B3 B2)/B3/100 - \bullet = (B3 B2)/B3*100 - (b) Write down the correct formula to go in cell C3. (1) Sahel thinks that the yearly consumption of oil can be modelled using a geometric progression of the form $$C_n = 3.36 \times 10^{10} \times r^n$$ where n is the number of years after 2014 C_n is the oil consumption in barrels per year in year n r is a constant. He decides to use the mean percentage change for the years 2005-2014 to find a value for r. He uses the formula below to calculate a value for r. $$r = \frac{100 + \text{mean percentage change for the years } 2005-2014}{100}$$ (c) Show that r = 1.01, correct to 3 significant figures. (3) | \sim | W | • | ٩. | |-----------|-----------|----------|---------------| | -X) | 46 | 6 | a e | | \times | × | _ | • | | \sim | | ×. | | | \sim | /88 | | =6 | | | | 2 | т. | | -82 | GII | 6 | ŭ. | | | Δ | _ | $\overline{}$ | | \sim | M | ÷ | ъ. | | | | | | | | -74 | 'n | ₽. | | \sim | | | | | | -80 | = | æ | | \sim | \vee | | ъ | | | | | | | | × | | - | | $-\times$ | SIII | | | | | /5 | - 2 | - | | \sim | M | - | 5 | | \sim | | ~ | ₹ | | | ж | | ч. | | -X) | Si | ٨ | ж. | | | ж | - | • | | | 'n | Ť. | ė. | | | | | | | \sim | 36 | | | | \sim | | | ъ. | | | 2 | _ | - | | | M | Î | ч. | | | | | | | | | | | | | | <u>~</u> | × | | | ж | - | - | | \sim | See | - | ěε. | | | \sim | uil | ~ | | \sim | Υ | Z | \rightarrow | | | <u>_</u> | ~ | ₹. | | | | | 2 | | \times | v | - | a. | | \sim | | | ar. | | \sim | | | | | | ĕ | 4 | ĸ. | | | | | | | \times | W | 4 | щ. | | | - | _ | _ | | | Á | - | ٥, | | | æ | I | ĸ. | | | -36 | æ. | в | | - X 2 | | ₹. | ×. | | | $^{\sim}$ | | | | \sim | - 40 | Ė | ۵. | | | | г | 981 | | \sim | w | œ | - | | \times | | | X. | | | ~ | - | 30 | | \sim | w | ٨ | a. | | | _ | 10 | | | \sim | 38 | - | 9 | | \times | OIII. | ī | ж. | | XX | -56 | Ė | | | \sim | S | 70 | ta. | | | | | | | | × | | | | | | | | | | | | | | \sim | | | | | \sim | | X | < | | \otimes | | | | | \sim | | | < | | \otimes | | | | | \otimes | | | | | * | | | | | | | | | | * | * | | | | | | | | | | * | | | | | * | | | | | * | | | | | * | | | | | * | | | | | * | | | | | * | | | | | * | | | | | * | | | | | * | | | | | * | | | | | * | Ä | 2 | r | | | Ä | 2 | r | | | | ě | ? | | | | ě | ? | | | | |) | | | | |) | | | | |) | | | | |) | | | | |) | | | | |) | | | | |) | | | | |) | | | | |) | | | | |) | | | | |) | | | | |) | | | | | 2) | | | | | 2) | | | | | 2) | O | (d) Using the model | | |--|--------| | $C_n = 3.36 \times 10^{10} \times 1.01^n$ | | | where | | | n is the number of years after 2014 C_n is the oil consumption in barrels per year in year n | | | calculate the total oil consumption for the years 2014 to 2023 inclusive. | (2) | | | (3) | (Total for Question 3 is 12 | marks) | **TOTAL FOR SECTION A IS 30 MARKS** ## **SECTION B** Answer ALL questions. Write your answers in the spaces provided. ## **COMPUTERS** | Re | efer to data source C in the source booklet. | | |----|--|------| | 4 | (a) Calculate the number of megabytes in 2 terabytes. | (2) | | | | (2) | The cost per GB of memory for a 3 TB hard disk drive before the floods in Thailand in 2011 can be modelled using the formula | | | | $C = 0.68 \times 0.638^t$ | | | | where | | | | C is the cost per GB, in dollars, of memory for a 3TB hard disk drive t is the number of years after the start of 2005. | | | | (b) (i) Use this formula to predict what the cost of a 3TB hard disk drive would have | | | | been at the start of 2015 if the floods in Thailand had not happened. | (3) | (ii) Compare the cost of memory for a 3TB hard disk drive predicted by the formula with the actual cost for 2015. | | | | with the actual cost for 2013. | (2) | | | | | | | | | | | | | | | (Total for Question 4 is 7 ma | rks) | | e | fer to data source D in the source booklet. | | | | | |---|---|-------|--|--|--| | | (a) By using the information in Table 6 and Table 7 in the source booklet, calculate how PCs Dell sold in 2005. | | | | | | | | (3) | Y 2005 1 | | | | | | | In 2005, the average price of a PC was \$805
In 2014, the average price of a PC was \$317 | | | | | | | (b) Calculate an estimate for the change in income for Dell from sales of PCs between | | | | | | | the years 2005 and 2014. | | | | | | | State whether the change is an increase or decrease. | | | | | | | | (4) | (Total for Question 5 is 7 mag | arks) | | | | Refer to data source E in the source booklet. 6 Jim thinks that if he spends more money on a CPU he will get a better performance. He tests his hypothesis by calculating two types of correlation coefficient for each set of CPUs for - i Clockspeed versus Price - ii Passmark.com rating versus Price. Some of his results are summarised below. | INTEL Processors | Product moment correlation coefficient | Spearman's rank correlation coefficient | |-----------------------------|--|---| | Clockspeed v Price | | 0.701 | | Passmark.com rating v Price | 0.829 | 0.832 | | AMD Processors | Product moment correlation coefficient | Spearman's rank correlation coefficient | |-----------------------------|--|---| | Clockspeed v Price | 0.487 | 0.465 | | Passmark.com rating v Price | 0.608 | | (a) Calculate the product moment correlation coefficient for Clockspeed versus Price for the INTEL processors. You may use $S_{xx} = 7768$, $S_{yy} = 2.82$ and $S_{xy} = 104.74$ where £x is the price of the processor and y GHz is the clockspeed. |
 |
 |
 |
 |
 |
 | | |------|------|------|------|------|------|--| |
 |
 |
 |
 |
 |
 | | |
 |
 |
 |
 |
 |
 | | |
 |
 |
 |
 |
 |
 | | |
 |
 |
 |
 |
 |
 | | | | | | | | | | (2) (b) Calculate Spearman's rank correlation coefficient for Passmark.com rating versus Price for the AMD processors. (6) | CPU | Price (£) | Passmark.com rating | | |----------------------------------|-----------|---------------------|--| | AMD Sempron LE-1300 | 16.66 | 622 | | | AMD A8-3500M APU | 22.00 | 2035 | | | AMD Turion II P540 Dual-Core | 26.63 | 1492 | | | AMD Phenom 9850 Quad-Core | 33.33 | 2937 | | | AMD Phenom II N660 Dual-Core | 59.33 | 1865 | | | AMD A10-5800K APU | 66.66 | 4639 | | | AMD A6-3650 APU | 75.07 | 3211 | | | AMD FX-6200 Six-Core | 80.59 | 6115 | | | AMD Athlon II X4 600e | 86.82 | 2447 | | | AMD Athlon 64 X2 Dual Core 4800+ | 93.30 | 1282 | | | AMD FX-8320E Eight-Core | 93.33 | 7500 | | | AMD FX-8100 Eight-Core | 94.67 | 6071 | | |
 |
 |
 |
 |
 | | |
 | | |------|------|------|-----------|------|-------|-------|------|--| |
 |
 |
 |
 |
 | | |
 | | |
 |
 |
 |
 |
 | | |
 | | |
 |
 |
 |
 |
 | | |
 | | |
 |
 |
 |
••••• |
 | ••••• | ••••• |
 | | |
 |
 |
 |
 |
 | | |
 | | |
 |
 |
 |
 |
 | | |
 | | |
 |
 |
 |
 |
 | | |
 | | |
 |
 |
 |
 |
 | | |
 | | | (c) Is Jim's hypothesis correct? | | |----------------------------------|------------------------------------| | Justify your answer. | (2) | (Total for Question 6 is 10 marks) | 7 A small software company has developed a new app. The company has two options - market and launch the app itself - go into partnership with a larger software company who will market and launch the app. If the company chooses to go into partnership it will pay a commission of 40% of the expected income from sales to the larger software company. The income that can be expected depends on the level of sales and is shown below. | | Expected income (£) | |--------------|---------------------| | High sales | 500 000 | | Medium sales | 200 000 | | Low sales | 100 000 | The table below shows the probabilities of each level of sales. | | Probability | | | | | | |----------------------------------|---------------------------------|-----|-----|--|--|--| | | High sales Medium sales Low | | | | | | | Market and launch the app itself | 0.1 | 0.2 | 0.7 | | | | | Go into partnership | 0.5 | 0.3 | 0.2 | | | | Which option gives the higher expected income? Justify your answer. | (6) | |-----|
 | | | | |---------------------------------------|--|--|--|
 | (Total for Question 7 is 6 marks) | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | TOTAL FOR SECTION B IS 30 MARKS | | | | TOTAL FOR SECTION B IS 30 MARKS TOTAL FOR PAPER IS 60 MARKS ## **Pearson Edexcel Level 3 Certificate** # **Mathematics in Context** **Paper 1: Comprehension** Wednesday 17 May 2017 - Morning **Source booklet** Paper Reference 7MC0/01 Do not return this source booklet with the question paper. Turn over ▶ ## Formulae sheet There will be no credit for anything you write on this formulae sheet. Mean of a frequency distribution $$= \frac{\sum fx}{\sum f}$$ Mean of a grouped frequency distribution $$=\frac{\sum fx}{\sum f}$$, where x is the mid-interval value Variance $$= \frac{\sum (x - \overline{x})^2}{n}$$ Standard deviation (set of numbers) $$\sqrt{\left[\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2\right]}$$ or $$\sqrt{\left[\frac{\sum (x-\overline{x})^2}{n}\right]}$$ where \bar{x} is the mean of the set of values Standard deviation $$\sqrt{\left[\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2\right]}$$ or $$\sqrt{\left[\frac{\sum f(x-\overline{x})^2}{\sum f}\right]}$$ Spearman's rank correlation coefficient $$1 - \frac{6\sum d^2}{n(n^2 - 1)}$$ The product moment correlation coefficient is $$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{\sum x_i y_i - \frac{\left(\sum x_i\right)\left(\sum y_i\right)}{n}}{\sqrt{\left(\sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}\right)\left(\sum y_i^2 - \frac{\left(\sum y_i\right)^2}{n}\right)}}$$ The regression coefficient of y on x is $b = \frac{S_{xy}}{S_{xx}}$ Least squares regression line of y on x is y = a + bx where $a = \overline{y} - b\overline{x}$ Arithmetic series $$u_n = a + (n-1)d$$ $$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$ Geometric series $$u_n = ar^{n-1}$$ $$S_n = \frac{a(1 - r^n)}{1 - r}$$ $$S_{\infty} = \frac{a}{1-r}$$ for $|r| < 1$ ## There will be no credit for anything you write in this source booklet. ## **SECTION A: ENERGY** #### Data source A Renewable electricity output has increased in total world electricity output for the fourth year in a row. Its share has risen by two percentage points since 2007, which has taken it across the symbolic 20% mark. This growth is no quirk of fate, but is the result of an ambitious and concerted policy pursued by a number of nations that have worked for over a decade on developing production capacities and renewable energy technologies. In the electricity-generating sector, almost half the world's newly installed capacity in 2011 was for renewable energy facilities. Already more than a hundred countries have committed to renewable electricity production targets. This fact alone demonstrates the growing worldwide interest in these technologies. The realignment of the global electricity mix is not over. In its publication "Renewable energy, medium term market report 2013", the International Energy Agency (IEA), reckons the renewable share could reach 25% in 2018. It forecasts that non-hydro renewable energies, driven by wind and solar power investments, could generate 8% of gross electricity output in 2018. The IEA predicts that gross renewable electricity output will continue to pick up speed in the medium term to 2018, rising by approximately 40% and forecasts installed renewable capacity increasing from 1580GW in 2012 to 2350GW in 2018. Table 1: Percentage of energy produced from renewable sources and total energy consumption for the 15 EU countries with the highest total energy consumption in 2012 | EU Country | Percentage of energy produced from renewable sources | Total energy consumption (petajoules) | |----------------|--|---------------------------------------| | Austria | 32.1 | 1066 | | Belgium | 7.4 | 1436 | | Czech Republic | 11.4 | 963 | | Finland | 34.5 | 1009 | | France | 13.6 | 5987 | | Germany | 12.1 | 8339 | | Greece | 13.4 | 685 | | Italy | 15.4 | 4805 | | Netherlands | 4.5 | 1942 | | Poland | 10.9 | 2596 | | Portugal | 25.0 | 636 | | Romania | 22.8 | 933 | | Spain | 14.3 | 3293 | | Sweden | 51.1 | 1303 | | United Kingdom | 4.2 | 5053 | Table 2: Percentage of energy produced from renewable sources and total energy consumption for the 15 Sub-Saharan African countries with the highest total energy consumption in 2012 | Sub-Saharan African Country | Percentage of energy produced from renewable sources | Total energy consumption (petajoules) | |------------------------------|--|---------------------------------------| | Benin | 50.6 | 145 | | Burkina Faso | 79.1 | 137 | | Cameroon | 78.1 | 256 | | Cote d'Ivoire | 74.4 | 291 | | Democratic Republic of Congo | 96.0 | 825 | | Ethiopia | 93.5 | 1547 | | Ghana | 49.5 | 284 | | Guinea | 74.1 | 139 | | Kenya | 78.5 | 556 | | Mozambique | 88.4 | 312 | | Nigeria | 86.5 | 4829 | | South Africa | 16.9 | 2777 | | Tanzania | 88.2 | 800 | | Uganda | 90.0 | 403 | | Zambia | 88.2 | 292 | Table 3: Percentage of energy produced from renewable sources and total energy consumption by all the regions of the world in 2012 | Region | Percentage of energy produced from renewable sources | Total energy consumption (petajoules) | |-----------------------------|--|---------------------------------------| | Northern America | 9.4 | 63 200 | | Europe | 11.5 | 65 000 | | Asia | 19.1 | 149 000 | | Oceania | 13.1 | 3 780 | | Latin America and Caribbean | 27.7 | 23 300 | | Africa | 55.9 | 19 800 | | World Total | | 324080 | ## Data source B The price of oil, or the oil price, generally refers to the spot price of a barrel of benchmark crude oil. Oil reserves are the amount of technically and economically recoverable oil. Proven reserves are those reserves claimed to have a reasonable certainty (normally at least 90% confidence) of being recoverable under existing economic and political conditions, with existing technology. Table 4: Cost per barrel of oil and total proven oil reserves 2004–2014* | Year | Cost per barrel (\$) | Oil consumption (1000 barrels per day) | Total proven reserves of oil (1000 million barrels) | |------|----------------------|--|---| | 2004 | 47.96 | 83 107 | 1366.2 | | 2005 | 66.09 | 84 411 | 1374.4 | | 2006 | 76.50 | 85 328 | 1383.7 | | 2007 | 82.65 | 86 741 | 1419.0 | | 2008 | 106.94 | 86 115 | 1490.0 | | 2009 | 68.05 | 85 066 | 1529.5 | | 2010 | 86.31 | 87 867 | 1636.6 | | 2011 | 117.09 | 88 974 | 1675.3 | | 2012 | 115.14 | 89 846 | 1697.9 | | 2013 | 110.42 | 91 243 | 1701.0 | | 2014 | 98.95 | 92 086 | 1700.1 | ^{*} Cost per barrel for each year is given as relative to the 2014 price to take into account the effects of inflation. ## **SECTION B: COMPUTERS** ## Data source C A hard disk drive (HDD) is a data storage device used for storing and retrieving digital information. The two most common modern HDDs are 3.5-inch, for desktop computers, and 2.5-inch, primarily for laptops. Capacity is specified in unit prefixes corresponding to powers of 1000: a 1-terabyte (TB) drive has a capacity of 1000 gigabytes (GB) where 1 GB = 1000 megabytes. The cost of hard disk drives has decreased dramatically over the past decade. China is the largest producer of hard disk drives followed by Thailand. In 2011 Thailand suffered severe flooding with 20% of the country being underwater. The effect was a decrease in hard disk drive production of around 30%. The result of this was that prices of hard disk drives doubled at the start of 2012. Table 5: Cost per GB of memory for a 3TB hard disk drive 2005–2015 | Year | Cost per GB (cents) | |------|---------------------| | 2005 | 87.60 | | 2006 | 40.63 | | 2007 | 28.00 | | 2008 | 20.00 | | 2009 | 9.33 | | 2010 | 7.33 | | 2011 | 4.00 | | 2012 | 7.86 | | 2013 | 5.50 | | 2014 | 4.00 | | 2015 | 3.33 | ## Data source D You may have noticed that a majority of your non-gamer friends own tablets and smartphones, and you might occasionally remember a day when the desktop PC ruled the market. Especially if you live in a trendy city like New York, everyone seems to have a tablet that performs the majority of their computing needs nowadays. A new report by market intelligence firm IDC says that the reason why you've been noticing more tablets and smartphones is because PC sales are in decline. Since 2010, when tablet sales started to take off, sales of PCs have levelled off and then started to decline. Table 6: Sales of personal computers (desktops and laptops) 2005–2014 | | | 2006 | | | | | | | | | |-------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Sales of PCs (millions) | 218.5 | 239.4 | 271.2 | 302.2 | 305.9 | 351.0 | 352.8 | 352.7 | 316.0 | 315.9 | Table 7: Global PC market share by percentage of total sales (2005–2014) | Rank | 2005 | 5 | 200 | 2006 | | 2007 | | 2008 | | 2009 | | |------|---------|------|---------|------|---------|------|---------|------|---------|------|--| | 1 | Dell | 16.8 | Dell | 15.9 | HP | 18.1 | HP | 18.2 | HP | 19.1 | | | 2 | HP | 14.6 | HP | 15.9 | Dell | 14.2 | Dell | 14.1 | Acer | 12.9 | | | 3 | Lenovo | 6.9 | Acer | 7.6 | Acer | 9.7 | Acer | 10.6 | Dell | 12.1 | | | 4 | Acer | 4.6 | Lenovo | 7.0 | Lenovo | 7.4 | Lenovo | 7.5 | Lenovo | 8.0 | | | 5 | Toshiba | 3.3 | Toshiba | 3.8 | Toshiba | 4.0 | Toshiba | 4.6 | Toshiba | 5.0 | | | | Others | 53.8 | Others | 49.8 | Others | 46.5 | Others | 44.9 | Others | 42.8 | | | Rank | 2010 |) | 2011 | | 2012 | | 2013 | | 2014 | | |------|--------|------|--------|------|--------|------|--------|------|--------|------| | 1 | HP | 17.9 | HP | 16.6 | HP | 16.1 | Lenovo | 16.9 | Lenovo | 18.8 | | 2 | Acer | 13.9 | Lenovo | 12.5 | Lenovo | 14.9 | HP | 16.2 | HP | 17.5 | | 3 | Dell | 12.0 | Dell | 11.7 | Dell | 10.7 | Dell | 11.6 | Dell | 12.8 | | 4 | Lenovo | 10.9 | Acer | 10.8 | Acer | 10.2 | Acer | 8.0 | Acer | 7.9 | | 5 | Asus | 5.4 | Asus | 5.7 | Asus | 6.9 | Asus | 6.6 | Asus | 7.2 | | | Others | 40.0 | Others | 42.8 | Others | 41.2 | Others | 40.7 | Others | 35.7 | ## Data source E The central processing unit (CPU) is the primary component of a computer that processes instructions. It handles all the instructions you give your computer, and the faster it does this, the better. One way to measure CPU performance is to consider its clockspeed, usually measured in Gigahertz (GHz). CPUs with a higher clockspeed can carry out tasks more quickly. However this is not the only factor when considering potential CPU performance. Passmark.com have developed a number of additional benchmark tests in order to better assess CPU performance. A rating is then calculated based on the CPU's performance in these tests with a higher score indicating better performance. The data for 12 Intel and 12 AMD CPUs is shown below. Table 8: Price, clockspeed and Passmark.com rating for 12 Intel CPUs | CPU | Price (£) | Clockspeed (GHz) | Passmark.com rating | |-----------------------|-----------|------------------|---------------------| | Intel Celeron 430 | 21.33 | 1.80 | 486 | | Intel Pentium P6200 | 24.66 | 2.13 | 1342 | | Intel Core2 Duo T9400 | 33.33 | 2.53 | 1753 | | Intel Celeron E3200 | 34.66 | 2.40 | 1391 | | Intel Pentium G645 | 39.33 | 2.90 | 2605 | | Intel Pentium G3450 | 57.99 | 3.40 | 3789 | | Intel Pentium G850 | 65.59 | 2.90 | 2685 | | Intel Pentium E6800 | 68.95 | 3.33 | 2089 | | Intel Core2 Duo E7600 | 69.99 | 3.06 | 1993 | | Intel Core i3-4130T | 86.66 | 2.90 | 4150 | | Intel Core i3-2120T | 88.11 | 2.60 | 3207 | | Intel Core i3-3245 | 99.99 | 3.40 | 4354 | Table 9: Price, clockspeed and Passmark.com rating for 12 AMD CPUs | CPU | Price (£) | Clockspeed (GHz) | Passmark.com rating | |----------------------------------|-----------|------------------|---------------------| | AMD Sempron LE-1300 | 16.66 | 2.30 | 622 | | AMD A8-3500M APU | 22.00 | 1.50 | 2035 | | AMD Turion II P540 Dual-Core | 26.63 | 2.40 | 1492 | | AMD Phenom 9850 Quad-Core | 33.33 | 2.50 | 2937 | | AMD Phenom II N660 Dual-Core | 59.33 | 3.00 | 1865 | | AMD A10-5800K APU | 66.66 | 3.80 | 4639 | | AMD A6-3650 APU | 75.07 | 2.60 | 3211 | | AMD FX-6200 Six-Core | 80.59 | 3.80 | 6115 | | AMD Athlon II X4 600e | 86.82 | 2.20 | 2447 | | AMD Athlon 64 X2 Dual Core 4800+ | 93.30 | 2.50 | 1282 | | AMD FX-8320E Eight-Core | 93.33 | 3.20 | 7500 | | AMD FX-8100 Eight-Core | 94.67 | 2.80 | 6071 | ## **Source information** Data source A adapted from: http://trackingenergy4all.worldbank.org/reports Global Tracking Framework 2015 http://www.energies-renouvelables.org Data source B adapted from: http://www.bp.com/statisticalreview BP Statistical Review of World Energy June 2015 Data source C adapted from: http://www.jcmit.com/memoryprice.htm Data source D adapted from: http://www.gartner.com/technology/home.jsp (https://en.wikipedia.org/wiki/Market share of personal computer vendors#cite note-2002 PC-5) Data source E adapted from: http://www.passmark.com (retrieved 24/01/2015)