edexcel

Mark Scheme (Results)
Summer 2015

Pearson Edexcel International GCSE Mathematics A (4MAO)
Paper 4H

Pearson Edexcel Level1/Level 2 Certificate Mathematics A (KMAO) Paper 4H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UG042089
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission
- awrt-answer which rounds to

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Apart from Questions 7c, 13, 19a, 20b, 21b and 23, where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

$\mathbf{2}$	$15 \div(6-4)(=7.5)$ 			

4 (a)	$(25+1) \div 2$ or 13 or 12.5	2	2	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	or listing scores and clear attempt to find middle value
(b)	$1 \times 9+2 \times 6+3 \times 3+4 \times 2+5 \times 1+4 \times 6$ oe (=67)		3		sight of at least 4 products and intention to add
	$\text { " } 67 " \div 25 \text { or } \frac{9+12+9+8+5+24}{25} \text { oe }$ (allow one error in a product)			M1dep	for division of sum of products by 25 (can be their 25 if evidence of adding frequencies)
		$2.68 \text { or } 2 \frac{17}{25}$		A1	accept 2.7 or 3 if preceded by $\frac{67}{25}$
					Total 5 marks

5 (a)	$y=-x$ drawn	$(2,2)(2,5)(4,5)(4,3)$	2	M1 A1	or a congruent shape with the correct orientation in the $1^{\text {st }}$ quadrant or a correct reflection in $y=x$
(b)			3	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Rotation (centre) $(0,-1)$ 90° clockwise or -90° or 270° anti- clockwise or $+270^{\circ}$ NB. If more than one transformation given then no marks should be awarded
					Total 5 marks

6 (a)	$\text { angle } M R Q(\text { or } R M Q)=x \text { or } \frac{180-y}{2}$	$180-2 x$	2	M1 A1	could be marked on diagram or for a correct equation in x and y $\text { oe eg } 2(90-x), 2(180-x)-180$ etc
(b)	$\begin{aligned} & (6-2) \times 180 \text { oe }(=720) \\ & " 720 \text { " }-(90+115+144+87),[720-436] \text { or } 284 \\ & " 284 \text { " } \div 2 \end{aligned}$	142	4	M1 M1dep M1dep A1	$\text { or }(180-360 \div 6) \times 6$
	Alternative				
	$\begin{aligned} & 180-90(=90), 180-115(=65), 180-144(=36), \\ & 180-87(=93) \\ & 360-(" 90 "+" 65 "+" 36 "+" 93 "),[360-284](=76) \\ & 180-(" 76 " \div 2) \end{aligned}$	142	4	M1 M1dep M1dep A1	A correct method to find each of the exterior angles at A,C,D \& E angles could be seen on diagram. A correct method to find the total of the remaining exterior angles A correct method to find k
					Total 6 marks

$\mathbf{8}$	$\cos 39=\frac{11.3}{x}$ oe		M1	$(x=) \frac{11.3}{\cos 39}$

9 (a)	$-5-4<x \leq 3-4$			M1subtraction of 4 from either side in an inequality or one side of inequality correct (eg $x \leq-1)$ or for $-5-4(=-9)$ and 3-4($=-1)$ Accept $x>-9, x \leq-1$
		$-9<x \leq-1$		A1
(b)		$-3,-2,-1,0,1$	2	B2
			B1 for one omission or addition	

10 (a)	131-111	20	2	M1 A1	For $60 \& 20$ or $60.75 \& 20.25$ seen in working or in diagram. Allow answers in the range 20-21 from correct readings.
(b)	80-50 (=30)		3	M1	or for $\frac{50}{80} \times 100(=62.5)$
	$\frac{30 "}{80} \times 100$			M1	or for 100 - "62.5"
		37.5		A1	Accept 38% from correct working
					Total 5 marks

11	$(12=) 2 \times 2 \times 3 \text { or }(120=) 2 \times 2 \times 2 \times 3 \times 5$ (condone $2,2,3$ or $2,2,2,3,5$) [factors could be seen at the end of a 'factor tree' or in a 'factor ladder'] or Venn diagram with the middle and one other region correct: Where 10 may be 2,5 and 4 may be 2,2	40	2	M1 A1	or for a list of at least 5 consecutive multiples of 4 or a list of at least 5 factors of 120 or for $12 x=120 \times 4$ oe $\left(\operatorname{eg} \frac{120}{12} \times 4(=x)\right)$ or $12 \div 4(=3)$ and $120 \div$ " 3 " accept $2 \times 2 \times 2 \times 5$ or $2^{3} \times 5$
					Total 2 marks

13	$\begin{aligned} & \frac{-2 \pm \sqrt{2^{2}-4 \times 3 \times-7}}{2 \times 3} \\ & \frac{-2 \pm \sqrt{4+84}}{6}=\frac{-2 \pm \sqrt{88}}{6} \end{aligned}$	1.23, -1.90	3	M1 M1 A1	correct substitution into the quadratic formula, allow one sign error in numbers; some evaluation may be seen. Indep for simplification of discriminant to $\sqrt{88}$ or $\sqrt{4+84}$ or $2 \sqrt{22}$ 1.23 (or better), -1.90 (accept answers in range -1.90 to -1.89) provided at least M1 awarded
					Total 3 marks

14 (a)	$\frac{20}{8} \times 3$ ое	7.5	2	M1 A1	
(b)	$1875 \div\left(\frac{20}{8}\right)^{3}$ oe	120	2	M1 A1	for $\left(\frac{20}{8}\right)^{3}$ or $\left(\frac{8}{20}\right)^{3}$ oe, accept ratios
	Alternative				
	$\frac{1875}{20} \times\left(\frac{8}{20}\right)^{2}(=15)$ oe	120		M1 A1	
				Total 4 marks	

15 (a)	Probabilities on branches correct.	$\frac{6}{10}, \frac{4}{10}, \frac{5}{9}, \frac{4}{9}, \frac{6}{9}, \frac{3}{9}$	3	B1 for $\frac{6}{10}, \frac{4}{10}$ oe on LH branches B1 for $\frac{5}{9}, \frac{4}{9}$ oe on top RH branches B1 for $\frac{6}{9}, \frac{3}{9}$ oe on bottom RH branches Decimals given on the $2^{\text {nd }}$ set of branches to be to at least 2dp (truncated or rounded).
(b)	$\frac{6}{10} \times \frac{4}{9}$ or $\frac{4}{10} \times \frac{6}{9}$ or ft from their tree diagram $\frac{6}{10} \times \frac{4}{9}+\frac{4}{10} \times \frac{6}{9}$ or ft from their tree diagram	$\frac{48}{90}$ oe	3	M1 or $\frac{6}{10} \times \frac{5}{9}+\frac{4}{10} \times \frac{3}{9}\left(=\frac{42}{90}\right)$ M1dep or $1-" \frac{42}{90}$ " A1 Allow 0.53(33...) Note: If all 4 probability products are seen at the ends of the branches on the tree diagram or in lists in the working space for (b), marks can only be awarded in (b) if it is clear which product(s) they are intending to use.
				Total 6 marks

$\mathbf{1 7}$	$\binom{5}{-1}+\binom{2}{-3}$ or $\binom{5}{-1}-\binom{-2}{3}$		M1 $\left.\begin{array}{c}\text { Or for }\binom{7}{a} \text { or }\binom{b}{-4} \\ \hline-4\end{array}\right)$	A1
Must be written as a vector.				

19 (a)	$\begin{aligned} & 5 \times 7+5 \sqrt{2}-7 \sqrt{8}-\sqrt{8} \sqrt{2} \\ & \text { Or } 35+5 \sqrt{2}-7 \sqrt{8}-\sqrt{8} \sqrt{2} \\ & \text { Or } 35+5 \sqrt{2}-7 \sqrt{8}-\sqrt{16} \\ & \text { Or } 35+5 \sqrt{2}-7(2 \sqrt{2})-\sqrt{16} \end{aligned}$	$31-9 \sqrt{2}$	3		4 terms, allow one sign error Note 5×7 may be 35 $-7 \sqrt{8}$ may be $-7 \times 2 \sqrt{2}$ but not $-14 \sqrt{2}$ $\sqrt{8} \sqrt{2}$ may be $\sqrt{16}$ or 4 or for $\sqrt{8}=2 \sqrt{2}$
	$35+5 \sqrt{2}-14 \sqrt{2}-4$ or $31+5 \sqrt{2}-14 \sqrt{2}$			M1dep	
					show from correct working
(b)	$\frac{3 c-\sqrt{c}}{\sqrt{c}} \times \frac{\sqrt{c}}{\sqrt{c}} \text { or } \frac{3 c \sqrt{c}-c}{c} \text { or } \frac{\sqrt{c}(3 \sqrt{c}-1)}{\sqrt{c}}$		2	M1	
		$3 \sqrt{c}-1$		A1	
					Total 5 marks

20 (a)	Eg. $2 n$ is always even so $2 n+1$ is odd	explanation	1	B1	
(b)	$\begin{aligned} & (2 n+1)+(2 n+3)+(2 n+5)+(2 \mathrm{n}+7) \text { oe } \\ & 8 n+16 \\ & 8(n+2) \end{aligned}$	show	3	M1 M1dep A1	or a complete explanation from correct algebraic working
	Alternative				
	let x be an even number $x+1+x+3+x+5+x+7$ oe $\begin{aligned} & 4 x+16 \\ & 4(x+4) \end{aligned}$		3	M1 M1dep A1	For defining x (at beginning or end) and summing 4 consecutive odd numbers For a complete explanation from correct algebraic working., eg $x+4$ must be even and 4 times an even number $=4 \times 2 n$ which is a multiple of 8
	Alternative				
	Let y be an odd number $\begin{aligned} & y+y+2+y+4+y+6 \text { oe } \\ & 4 y+12 \\ & 4(y+3) \end{aligned}$		3		For defining y (at beginning or end) and summing 4 consecutive odd numbers For a complete explanation from correct algebraic working. eg $(y+3)$ is (odd + odd) which is even and therefore a multiple of 2 , and $4 \times 2 \mathrm{n}$ is a multiple of 8
					Total 4 marks

22	$\begin{aligned} & \frac{1}{2} a b \sin 150 \text { oe or } \frac{1}{2}(a+1)(b+2) \text { oe } \\ & \text { (must be } \sin 150, \text { not } \sin \mathrm{C} \text {) } \\ & \hline \end{aligned}$		5		$\text { Or } \frac{1}{2}(a+1)(b+2) \sin 90$
	$3 \times \frac{1}{2} a b \sin 150=\frac{1}{2}(a+1)(b+2) \text { oe }$				correct equation, eg may see $\frac{3}{4} \mathrm{ab}=\ldots$
	$3 \times \frac{1}{2} a b \sin 150=\frac{1}{2}(a b+b+2 a+2) \mathrm{oe}$,	expansion of brackets in a correct equation
	$\begin{aligned} & 3 a b-2 a b-4 a=2 b+4 \text { oe } \mathbf{~ o r} \\ & 3 a b \sin 150-a b-2 a=b+2 \text { oe } \end{aligned}$			M	isolation of terms in a in a correct equation (may be on either side of equation \& can still have $\sin 150$)
		$\frac{2 b+4}{b-4} \text { oe }$			$\begin{gathered} \text { eg } \frac{-2 b-4}{4-b} ; \frac{\frac{1}{2} b+1}{\frac{1}{4} b-1}, \\ \frac{b+2}{3 b \sin 150-b-2}, \text { etc } \end{gathered}$
					Total 5 marks

