Surname	Centre Number	Candidate Number
Other Names		0

GCSE

4250/01

GEOLOGY

Theory Paper (Paper version of on-screen assessment)

WEDNESDAY, 24 MAY 2017 - MORNING

1 hour 30 minutes

For Exa	e only	
Section	Maximum Mark	Mark Awarded
1.	7	
2.	15	
3.	15	
4.	18	
5.	17	
6.	18	
7.	10	
Total	100	

ADDITIONAL MATERIALS

In addition to this examination paper you will need a:

- Data Sheet;
- calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Write your answers in the spaces provided.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets alongside each question.

You are reminded that assessment will take into account the quality of written communication (QWC) used in your answers to **Section 4 Q7** and **Section 5 Q5**.

Answer all questions in each section.

Section 1 - answer questions 1 - 4

Figure 1 shows the variation in global sea level over the last 500,000 years. The present sea level is shown by the horizontal line marked as $0\,\text{m}$.

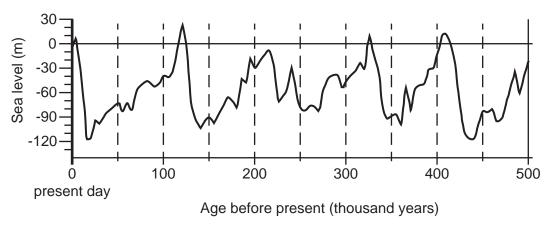


Figure 1

1.	Which two of the following statements are incorrect ? Tick () only two boxes.	[2]
	at times sea level has been more than 100 m lower than at present	
	compared to the present, past falls in sea level have been greater than rises in sea level	
	250,000 years ago polar ice would have been more extensive than today	
	250,000 years ago global temperatures would have been higher than today	
	levels of carbon dioxide in the atmosphere would have been higher 150,000 years ago than 400,000 years ago	
	the climate of the past 500,000 years was dominated by repeated glacial and interglacial cycles	
2.	Explain how the absence of ice sheets can increase global warming.	[2]
		 ······································

Figure 2

3.	What is the name of feature A in Fig.	gure 2? Tick (✓) only one box.	[1]	
	raised beach			
	drowned river valley (ria)			
	submerged forest			
	U-shaped valley			
	discordant drainage			
4.	Explain how feature A in Figure 2 p	provides evidence for a changing global sea level.	[2]	
			<u>.</u>	

Examiner only

Section 2 – answer questions 1 – 7

Figure 3 shows two different styles of folding (B and C).

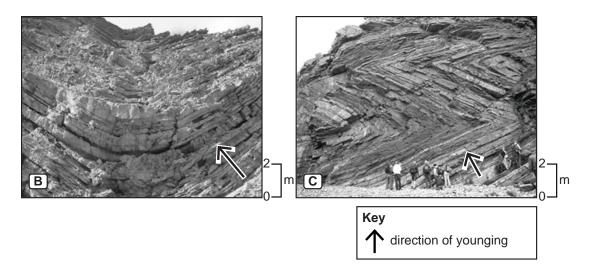


Figure 3

١.	Tick (/) only two boxes.	rect?	[2]
	fold B is a syncline		
	in fold B the angle of dip on each limb is similar		
	the folding in C has approximately vertical axial planes		
	some of the fold limbs in C are upside down		
	the fold hinges in B are rounded whereas the fold hinges in C are angular		
	the folding in C has formed under greater tension than fold B		

4250 010005

Figure 4 is a geological **map**. The land surface is flat.

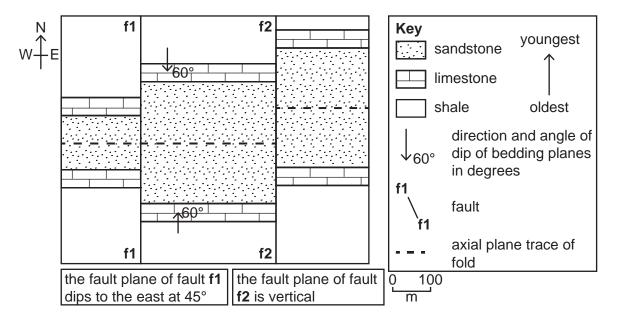


Figure 4

2.	Which three of the following statements about the structure Tick (/) only three boxes.		[3]
	the movement along fault f1 is vertical		
	fault f1 is downthrown to the east		
	fault f1 is a reverse fault		
	fault f2 is a strike slip fault		
	the movement along fault f2 is horizontally to the right		
	the fold is a syncline		
	the fold is overturned		
3.	Draw a line from each of the following types of stress	to the correct type of fault.	[3]
	compression no	rmal fault	
	shear str	ike slip fault	
	tension thr	ust fault	

© WJEC CBAC Ltd. (4250-01) Turn over.

Figure 5 is a photograph showing mineralisation along one of the faults in Figure 4.

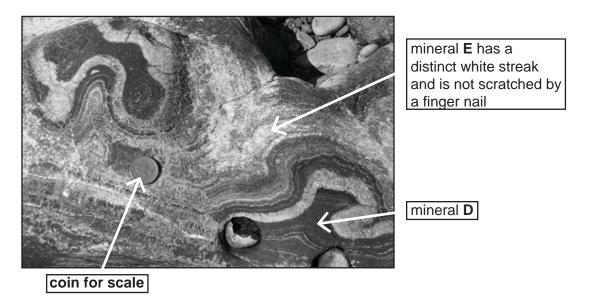


Figure 5

4.	Mineral D has bee iron? Tick (✓) only		iron. Which one of the following minerals is the ore	of [1]
	halite			
	galena			
	gold			
	quartz (amethyst)			
	haematite			
5.	Using the Data Sh	neet, identify the white	mineral E in Figure 5 . Tick (✓) only one box.	[1]
	quartz			
	quartz feldspar			
	•			
	feldspar			
	feldspar mica	© WJEC CBAC Ltd.	(4250-01)	

Examiner Which one of the following techniques is most suitable for detecting ore minerals in the field such as mineral **D** in **Figure 5**? Tick (✓) only **one** box. geotechnical survey seismic survey geochemical analysis of river sediment changes in groundwater monitored in boreholes

Successful carbon capture and storage depends upon suitable rock types and geological structures being available close to a coal-fired power station. Figure 6 is a recent newspaper article and diagram of carbon capture and storage.

Carbon capture and storage

analysis of porosity and permeability of nearby rocks

At the storage site the carbon dioxide (CO₂) is injected into the selected geological formation. After injection, the carbon dioxide moves up through the reservoir until it reaches the "cap rock". This mechanism of storage is the same one that has kept oil and natural gas under the ground for millions of years. In the UK, carbon dioxide will predominantly be stored in suitable geological structures, between 1 and 4 km below the seabed of the North Sea. Depleted oil and gas fields offer potential storage sites for carbon dioxide from power stations.

7.

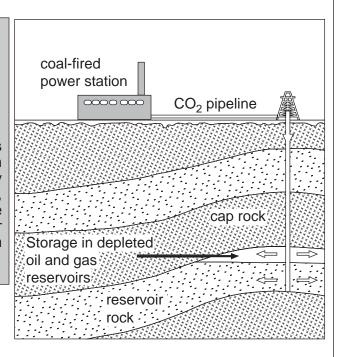


Figure 6

	© WJEC CBAC I td	(4250-01)		Turn over.
by coal-fired pow	er stations.			[4]
Explain willy depi	eled oli and gas neid	s oner potential sto	rage sites for carbon dit	ixide produced

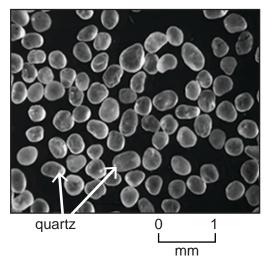

Section 3 – answer questions 1 – 7

Figure 7 is a photograph of sedimentary rock in a quarry.

Figure 7

Which one of the following statements about the sedimentary structure in Tick (✓) only one box.	Figure 7 is correct? [1]
the structure is graded bedding	
the beds are upside down	
the structure is large-scale cross bedding	
the structure is desiccation cracks	
the structure is typically found in a river environment	

well sorted

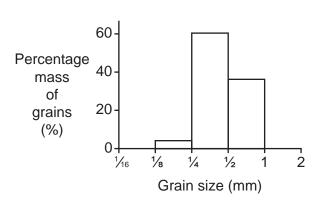


Figure 8

Which two of the following statements about the grains in Figure 8 are correct? Tick (/) only two boxes.

poorly sorted

the grain size is typical of a conglomerate

fine-grained

crystalline texture

the grain size is typical of a sandstone

3. Explain **one** erosional process which has resulted in the quartz grains becoming well rounded. [2]

[2]

	10		I = v = ·····
4.	Explain how the evidence from Figures 7 and 8 deposition, climate and latitude of Britain at the t	3 can be used to determine the environment of time of deposition. [3]	
5.	Which two of the following properties are most li Tick (✓) only two boxes.	ikely to result in a rock being a suitable aquifer? [2]	
	highly compacted		
	well cemented		
	interconnected pore spaces		
	spherical grains		
	a large percentage of fine grains		
	angular grains		

© WJEC CBAC Ltd.

(4250-01)

Figure 9 is a geological cross-section where the rock shown in Figure 7 forms an aquifer.

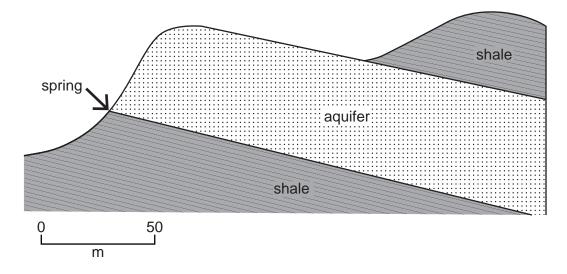


Figure 9

6.	Explain why a spring occurs at the location shown on Figure 9 . Use information from Figures 7 and 8 .		

Examiner only

Figure 10 shows how sediment is converted into a sedimentary rock during the rock cycle.

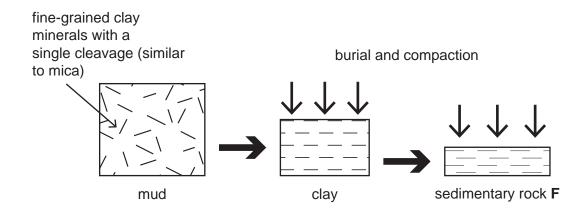


Figure 10

7.	Which three of the following statements are correct ? Tick (\checkmark) only three boxes.	[3]
	physical weathering of granite produces clay	
	water is lost from the mud and clay during compaction	
	rock F is sandstone	
	conversion of the mud to a sedimentary rock is called metamorphism	
	the clay becomes more permeable during this process	
	the porosity of the clay decreases during this process	
	rock F is shale	

BLANK PAGE

Section 4 – answer questions 1 – 8

Figure 11 is a map of the Caribbean plate showing three different types of plate boundary and the location of the island of Montserrat (**M**).

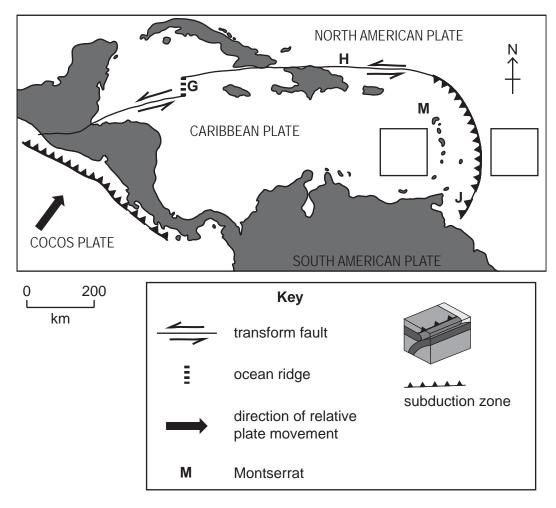


Figure 11

1.	Which type of plate boundary is present at each of the locations G , H and J in Figure 11 ? Select your answers from the list below.		
		conservative convergent (destructive) oceanic-oceanic convergent (destructive) oceanic-continental convergent (destructive) continental-continental divergent (constructive)	
	G		
	Н		

4250 010015

2.	Selecting from the choices below, draw an arrow in both of the empty boxes in Figure 11 to show the directions of relative plate movement at those locations. [1]
	← → ↓ ← → ↑
3.	Which one of the following occurs at a conservative plate boundary? Tick (✓) only one box. [1]
	shallow, medium and deep focus earthquakes
	volcanic activity and deep focus earthquakes
	volcanic activity without seismic activity
	shallow focus earthquakes only
	mountain belts and thrust faults
4.	Select the most likely rock associated with each of the following situations. Select your answers from the list below. [4]
	slate marble granite basalt andesite limestone turbidite
	recrystallisation of shale in the Caledonian orogenic belt
	island arc volcanic eruption such as Montserrat (Figure 11)
	ocean trench sediment in the Lower Palaeozoic of Britain

divergent plate boundary in the Cenozoic of NW Britain

© WJEC CBAC Ltd. (4250-01) Turn over.

Figure 12 shows the thickness of volcanic ash around the Soufrière Hills volcano on the Caribbean island of Montserrat (**M** on **Figure 11**). The ash was produced during eruptions between 1995 and 1999.

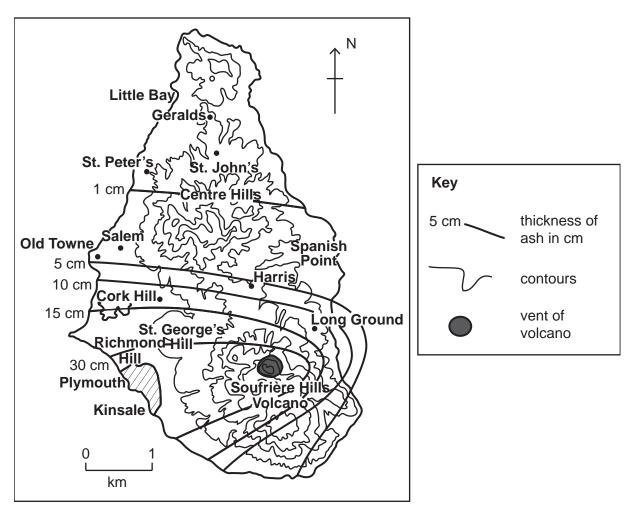


Figure 12

Soufrière Hills after the eruptions? Tick (/) only two boxes.	[2]
Cork Hill and Long Ground were covered by different thicknesses of ash	
the town of Plymouth was buried under more than 30 m of ash	
Little Bay suffered only a light covering of ash	
the wind at the time of the eruptions was blowing from an approximately easterly direction	
the wind at the time of the eruptions was blowing from an approximately westerly direction	
the ash was confined to river valleys	
all the ash fell on the island	

5.

Figure 13 is a photograph taken near the abandoned town of Plymouth on Montserrat in 2010.

Figure 13

6.	Identify the volcanic hazard in Figure 13 . Tick (/) only one box.		[1]
	lava flow		
	pyroclastic flow		
	mudflow		
	ash fall		
	landslide		

7.	The Soufrière Hills volcano is being regularly monitored by the Montserrat volcano observatory. Explain how ground deformation and gas emissions are used to help predict volcanic activity. [4 QWC]	Examiner only
8.	Give two reasons why the level of risk from natural hazards is reduced in areas of higher economic development. [2]	

BLANK PAGE

Section 5 – answer questions 1 – 6

Examiner only

Table 1 shows three different fossils.

Fossil			
Feature			
scale for	each fossil L cm	Table 1	
	tch each of the fossils in Table wers in the blank boxes in Table		m the list below. Write your [3]
	thecae	three lobes ra	adial septa
2 . Wh	ich one of the following statemen	nts is correct ? Tick (✓) only o r	ne box. [1]
gra	ptolites are used to date Mesozo	oic marine sediments	
trilo	bites are extinct so the environm	nent in which they lived is unkno	own
gra	ptolites are used to date Upper F	Palaeozoic continental sedimen	nts
trilo	bites are found in sedimentary r	ocks with other marine fossils s	so were marine
cor	als indicate a reef environment ir	n temperate latitudes	

Examiner only

Figure 14 shows three sedimentary logs from widely separated locations and the position of fossils (**N**, **P**, **Q** and **R**) found within them.

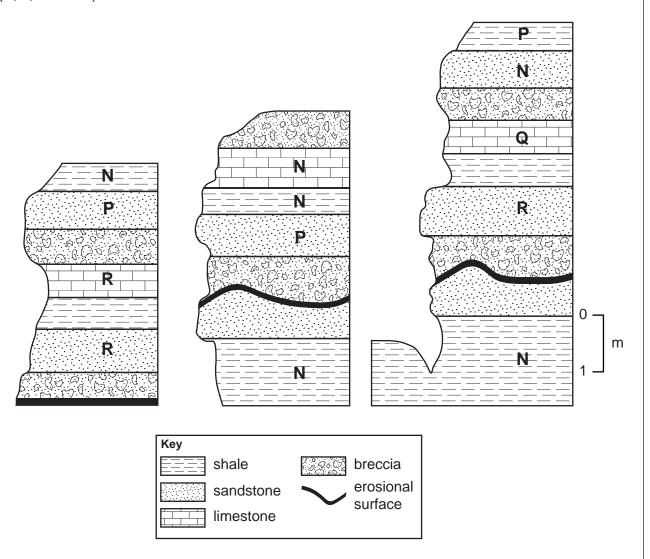


Figure 14

3.	Which fossil (N, P, Q or R) in Figure 14 is the most suitable for relative dating and correlation Give two reasons for your answer.		
	Fossil		

Examiner only

Decay of radioactive isotopes in minerals provides a method of calculating the absolute ages of rocks. **Figure 15** shows the rate of decay of a radioactive parent isotope into a daughter isotope.

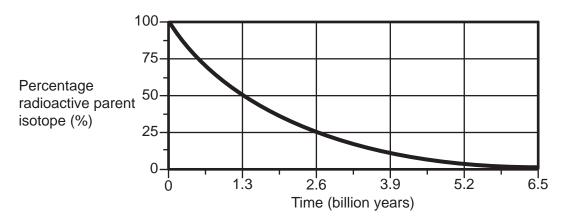


Figure 15

4.	Which two of the following statements are correct ? Tick (/) only two boxes.	[2]
	a mineral in granite containing 12.5% of the parent isotope is 3.9 billion years old	
	the half-life of the isotope is 2,600 million years	
	50% of the daughter element is formed after one half-life	
	the time taken for decay gets longer with each half-life	
	25% of the parent isotope is left after four half-lives	
	a mineral in basalt with 75 % of the daughter element present is 3.9 billion years old	
5.	Explain two reasons why radiometric dating is a suitable method of absolute dating rocks and minerals but not others.	for some [4 QWC]
		······································
		•••••••••••••••••••••••••••••••••••••••

6. Draw a line from each of the following geological events to the correct geological age. [4] life originated in the oceans 4,600 Ma

the K/T mass extinction 3 Ma

appearance of early hominids such as Lucy 65 Ma

the Earth was formed 3,500 Ma

17

Examiner

© WJEC CBAC Ltd. (4250-01) Turn over.

Section 6 – answer questions 1 – 8

Figure 16 is a geological map showing two igneous bodies (S and T).

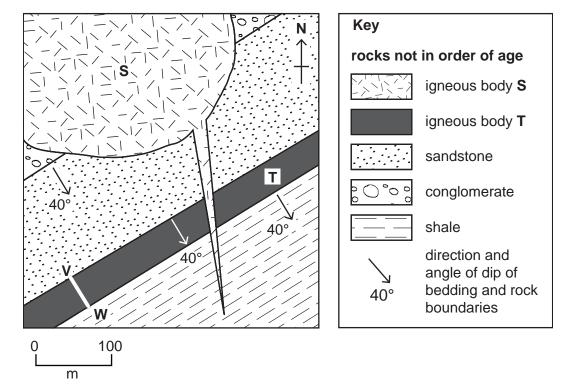


Figure 16

Which two of the following correctly describe the igneous body S and its contact with the

sedimentary rocks in **Figure 16**? Tick (**/**) only **two** boxes. [2]

cuts across the strike of the bedding

extrusive

intrusive

parallel to the strike of the bedding

outer edge of a metamorphic aureole

unconformity

Figure 17 is a microscope view of a rock collected from the centre of igneous body S in Figure 16.

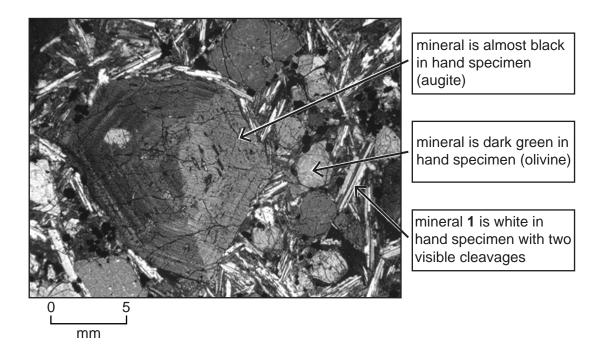


Figure 17

2.	Which two of the following statements about the rocl Tick (✓) only two boxes.	k in Figure 17 are correct ?	[2]
	the rock is granite		
	crystals are arranged randomly		
	the texture is poorly sorted		
	crystals show alignment		
	the texture is fragmental		
	mineral 1 is feldspar		

Examiner only

3.	The igneous rock in Figure 17 has both coarse and medium-sized crystals. Which two of following statements correctly explain how this texture formed? Tick () only two boxes.	the [2]
	the augite was formed by recrystallisation the augite crystallised slowly at depth mineral 1 was formed as a cement from pore waters mineral 1 crystallised nearer the surface than the augite the augite was formed from hydrothermal fluids mineral 1 formed before the augite	
	ure 18 is a graph showing the variation in crystal size between points V and W in igneous bod igure 16. V Size of 3 - 4 - 4 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	ут
4.	Describe and explain the variation in crystal size.	[3]

(4250-01)

5.	Which two of the following correctly describe ig Tick (/) only two boxes.	neous b	oody T in Figures 16 a			aminer only
	cuts across the strike of the bedding					
	dyke					
	sill					
	parallel to the strike of the bedding					
	lava flow					
	pluton					
•		40 in a	uda af salativa a sa is	Table 0		
6.	List the following geological features from Figure					
	igneous body S , igneous body T , sandstone, sha	le, cong	lomerate		[3]	
			youngest			
		_	<u>†</u>			
		-				
			oldest			
	Table 2	2				
		Key				
			ot in order of age igneous body S			
			igneous body T			
			sandstone			
	.:40°	,0 ° C	conglomerate			
	40° 40°		shale			
	W. 40	40°	direction and angle of dip of bedding and rock boundaries			
	0 100			ı		
	m Figure 1	6				

Turn over.

Some of the rock fragments in the conglomerate in **Figure 16** are of metamorphic rocks. **Figure 19** is a microscope view of one of the metamorphic rocks.

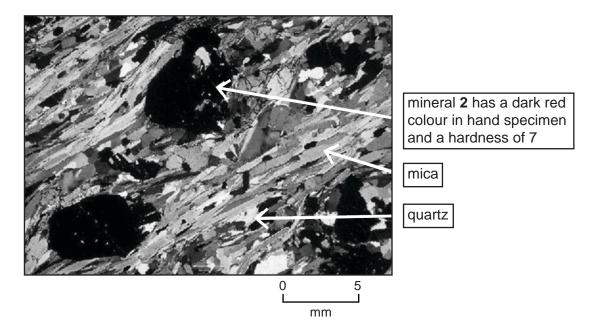


Figure 19

7.	Which one of the following statements about the rollick (✓) only one box.	[1]	
	the rock has a schistosity		
	the rock has a slaty cleavage		
	mineral 2 is haematite		
	the rock is non-foliated		
	the rock is marble		
8.	Explain how the alignment of the micas can develor Figure 19 .	in [3]	
		 	18
		 └	

BLANK PAGE

Section 7 – answer questions 1 – 5

Figure 20 shows the main sources for electricity generation in the UK between 1950 and 2014.

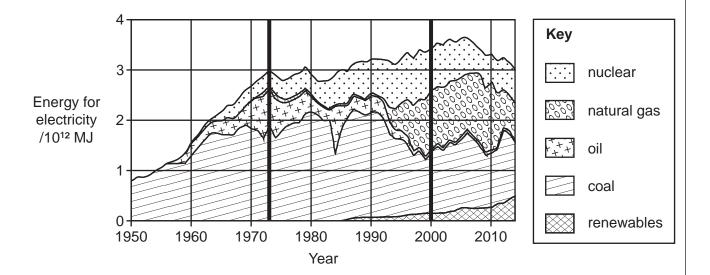
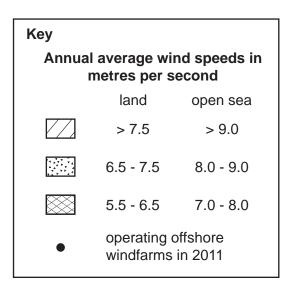



Figure 20

1.	Which two of the following statements are incorrect ? Tick (✓) only two boxes.	[2]
	electricity generation in the UK has increased between 2010 and 2014	
	between 1950 and 1973 coal was the main source	
	between 1973 and 2000 oil reached its maximum contribution and then declined	
	the contribution from nuclear energy was broadly the same between 2000 and 2014	
	between 1973 and 2000 natural gas made an increasing contribution	
	renewables made their first significant contribution before 1973	
	since its maximum contribution between 1973 and 2000 coal as a source is in decline	

Figure 21 shows the average annual wind speeds in and around the UK and the location of offshore wind farms in 2011.

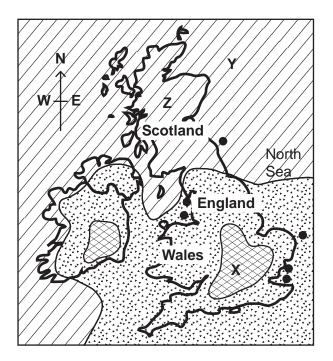


Figure 21

Write the correct average wind speed at each of the locations (X, Y and Z) in Figure 21 in the correct empty boxes in Table 3. Select your answers from the list below.

5.5-6.5 8.0-9.0 >7.5 >9.0 6.5-7.5 7.0-8.0

X	Υ	Z

Table 3

3. Which **one** of the following statements is **incorrect**?

[1]

winds are equally as strong off the west coast of Scotland as the northern North Sea

winds are less strong in location **X** than in the southern North Sea

the southern North Sea is a suitable area for wind farms

offshore windfarms in the UK are all located in the areas with the strongest winds

4.	Explain two reasons why renewable energy resources are becoming more important. [2]	Examiner only
5.	Nuclear waste is one environmental problem caused by the generation of electricity from nuclear power. Describe the environmental problem associated with nuclear waste. Explain a geological solution to this problem. [3]	

END OF PAPER