Surname	Centre Number	Candidate Number
Other Names		0

GCSE

4250/01

GEOLOGY

Theory Paper (Paper version of on-screen assessment)

MONDAY, 21 MAY 2018 - MORNING

1 hour 30 minutes

For Examiner's use only		
Section	Maximum Mark	Mark Awarded
1.	19	
2.	13	
3.	13	
4.	17	
5.	12	
6.	16	
7.	10	
Total	100	

ADDITIONAL MATERIALS

In addition to this examination paper you will need a:

- · Data Sheet;
- calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions. Where numerical answers are required figures should be used.

Write your answers in the spaces provided.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets alongside each question.

You are reminded that assessment will take into account the quality of written communication (QWC) used in your answers to **Section 3 Q5** and **Section 6 Q10**.

Answer all questions in each section.

Section 1 – answer questions 1 – 9

Figure 1 shows the dates on two gravestones, one made of granite and the other made of limestone.

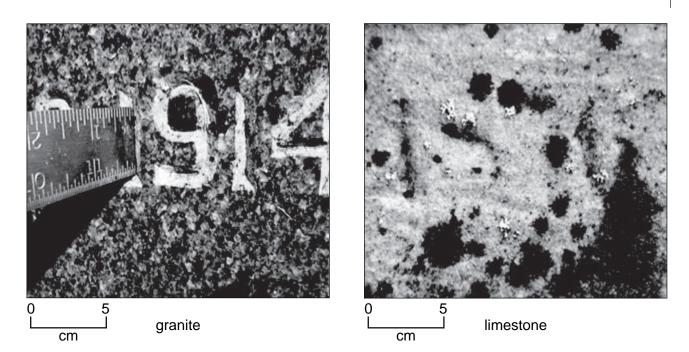


Figure 1

1.	Which two of the following statements about Figure 1 and weathering proce Tick (/) only two boxes.	sses are correct? [2]
	the date on the granite gravestone is still clear because granite contains quartz which weathers quickly by chemical processes	
	reaction with organic acids is a process of biological weathering	
	the date on the limestone gravestone is difficult to read due to the effects of freeze thaw weathering	
	chemical weathering is most rapid in dry climates	
	acidic rain water, due to dissolved carbon dioxide, chemically weathers limestone producing only insoluble materials	
	chemical weathering of the limestone gravestone by weak acids has made the date difficult to read	

4250 010003

Table 1 shows the strength of four rocks using a hammer test (striking with a test hammer). The scale is from 10 - 100 with 100 being the strongest.

rock	strength (10-100)
shale	36
sandstone	48
basalt	54
marble	72

Table 1

2.	Table 1 shows that the strength of the shale compared to the marble has a ratio of 1:2. Calc	ulate
	the ratio of the strength of the shale compared to the basalt. Show your calculation below	[2]

Calculation

Ratio of shale to basalt	t 1:
--------------------------	------

© WJEC CBAC Ltd. (4250-01) Turn over.

Figure 2 shows scarp and vale landforms and a cross section showing the underlying geology.

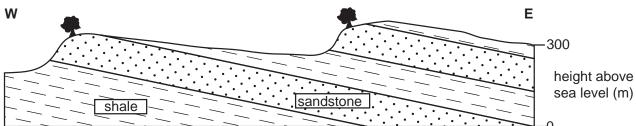


Figure 2

Table 1 and resistance to weathering and erosion.	[3]
	· · · · · · · · ·
	· · · · · · · · ·

Figure 3 shows how the amount of carbon dioxide (CO_2) in the atmosphere has varied over the past 420,000 years.

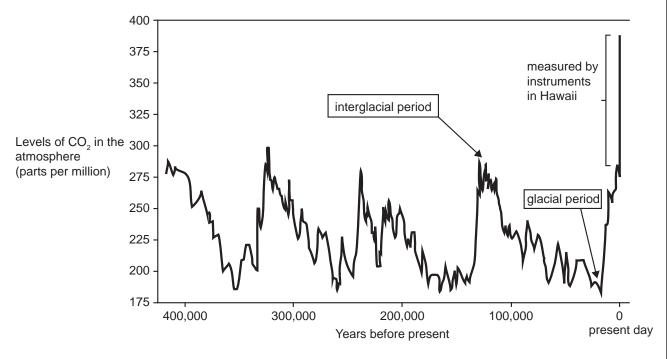
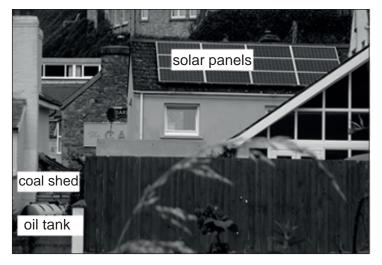


Figure 3

4. Which one of the following statements about Figure 3 is incorrect? Tick (/) only one box. [1]


before the present day the maximum level of CO_2 in the atmosphere has not been above 320ppm in interglacial periods	
CO ₂ levels in the atmosphere are variable	
CO ₂ levels are lowest during glacial periods at approximately 160ppm	
CO ₂ levels today are much higher than any time in the last 420,000 years	
glaciations have occurred approximately every 100,000 years	

© WJEC CBAC Ltd. (4250-01) Turn over.

Examiner only Instruments in Hawaii have measured CO₂ in the atmosphere during historical times. Explain how data about atmospheric composition can be obtained for the geological past. [3] Which **one** of the following statements about CO₂ in the atmosphere is **incorrect**? Tick (✓) only **one** box. [1] increased atmospheric CO2 leads to an enhanced greenhouse effect formation and burial of limestone leads to an increase in CO₂ in the atmosphere increased volcanic activity leads to an increase in CO₂ in the atmosphere increased burning of fossil fuels leads to an increase in CO₂ in the atmosphere dissolving of carbon dioxide in sea water leads to a decrease in CO₂ in the atmosphere

© WJEC CBAC Ltd. (4250-01)

One way in which humans can reduce their impact on the atmosphere is to increase the use of renewable energy. **Figure 4** shows two areas of housing and different sources of energy.

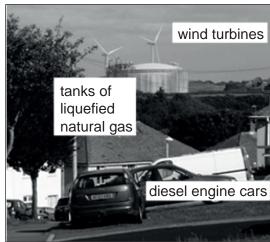


Figure 4

7. Name the **two** types of renewable energy being used in **Figure 4**. Tick (**/**) only **two** boxes. [2]

oil

solar

diesel

wind

liquefied natural gas

4250 010007

8.	Explain why an increase OR reduction in the area covered by ice caps has an influence on the Earth's atmospheric temperature. [3]	only

© WJEC CBAC Ltd. (4250-01)

Figure 5 is a newspaper article describing the storms of the winter of 2013-2014 which affected the UK.

During the 2013-2014 winter parts of the United Kingdom were flooded following severe storms. The flooding affected the majority of the Somerset Levels and saw the main railway line to Cornwall and West Devon at Dawlish damaged for several weeks. This was the most exceptional period of winter rainfall in at least 248 years. Met Office forecasters said changes in sea surface temperatures and a reduction in the amount of Arctic sea-ice could be influencing the increase in rainfall. Another theory is that the 0.7°C increase in global temperatures since pre-industrial times is causing the wet weather because a warmer atmosphere can hold more moisture, leading to the greater risk of heavy rain.

Figure 5

9.	boxes.	[2]	
	when it rains without warning		
	could be caused by global warming or melting Arctic sea ice		
	when temperature reaches 25° C		
	when night temperature drops below 0° C		
	could be caused by a warmer atmosphere holding less water		
	when a weather event is significantly different from the historical average		
			<u> </u>

19

4250 010009

Section 2 - answer questions 1 - 9

Figure 6 shows the earthquake intensity around the epicentre of an earthquake that took place in California in 1906.

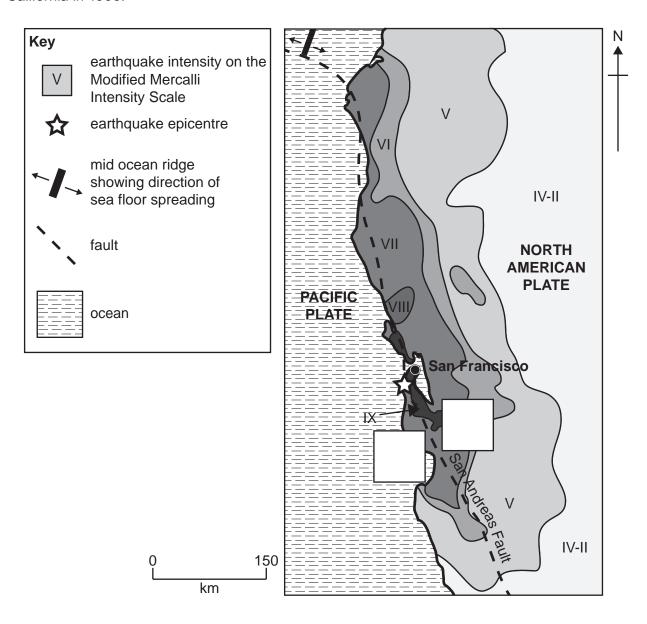


Figure 6

	_
	_
0	
2	c
N	-

			Examiner
1.	Which one of the following statements about the earthquake s Tick (\mathcal{I}) only one box.	hown in Figure 6 is correct ? [1]	Offity
	earthquake intensity decreases at an equal rate in all directions from the epicentre		
	the epicentre of the earthquake is the point within the Earth where the earthquake originates		
	earthquake intensity decreases more rapidly towards the northwest		
	in San Francisco earthquake intensity was IX on the Modified Mercalli Intensity Scale		
	earthquake intensity depends only on the distance from the epicentre		
2.	The San Andreas Fault in Figure 6 forms a plate margin. Draw in the empty boxes in Figure 6 to show the directions of relocations.	elative plate movement at those	
		[1]	4250
2	Name that the of what recognize between the Name American are	d Dacifia whata forward at the Coun	
3.	Name the type of plate margin between the North American an Andreas Fault. Tick (🗸) only one box.	d Pacific plate formed at the San [1]	1
	divergent (constructive)		
	convergent (destructive) ocean-ocean		
	convergent (destructive) ocean-continent		
	convergent (destructive) continent-continent		
	conservative		
			1

			Examiner only
4.	Which two of the following statements correctly describe the San Andreas Fault? Tick (/) only two boxes.	[2]	Only
	a normal fault		
	a transform fault		
	caused by tensional stress		
	a strike-slip fault		
	a reverse fault		
	a thrust fault		
	caused by compressional stress		
5.	Which one of the following occurs at the San Andreas Fault? Tick (✓) only one box.	[1]	
	shallow, medium and deep focus earthquakes		
	volcanic activity without seismic activity		
	deep focus earthquakes only		
	volcanic activity and deep focus earthquakes		
	shallow focus earthquakes only		

© WJEC CBAC Ltd.

Table 2 shows the Modified Mercalli Intensity Scale.

Modified Mercalli Intensity Scale					
Mercalli Intensity Eye-witness observations					
I	Felt by very few people.				
II	Felt by a few people mainly on the upper floors of buildings.				
III	Felt by people mainly on the upper floors of buildings. Cars may rock slightly. Vibrations similar to a passing truck.				
IV	Felt indoors by most people and outdoors by a few. Windows and doors disturbed. Walls make a cracking sound. Objects on shelves shake. Vibrations like a heavy truck striking a building.				
V	Felt by most people. Windows broken. Objects on shelves overturned.				
VI	Felt by all people. Heavy furniture moved. Plaster falls off walls.				
VII	Considerable damage to poorly built or badly designed structures. Chimneys broken. Slight to moderate damage in well-built structures. Damage negligible in buildings of good design.				
VIII	Damage great in poorly built structures. Considerable damage in ordinary buildings with partial collapse. Chimneys, walls and chimney stacks fall. Damage slight in specially designed structures. Furniture broken.				
IX	Damage considerable even in specially designed structures. Great damage in large buildings with partial collapse. Buildings shifted off foundations. Ground cracked.				

Table 2

6.	A woman living in the area shown in Figure 6 observed that it was difficult to stand up, her chapsed and the chimney was broken and fell. An outside wall collapsed.	ıair
	Using Table 2 , state the intensity of the earthquake affecting the area where this woman live on the Modified Mercalli Scale. Tick () only one box.	/ed [1]

IV	
V	
VI	
VII	
VIII	

7.	Describe one way in which the level of risk from earthquakes can be reduced through improve building design.	/ed [2]
		· · · · · · ·

© WJEC CBAC Ltd. (4250-01) Turn over.

Figure 7 is a graph showing rate of sea floor spreading at the ocean ridge in the Pacific Ocean in **Figure 6** over the last 4 million years.

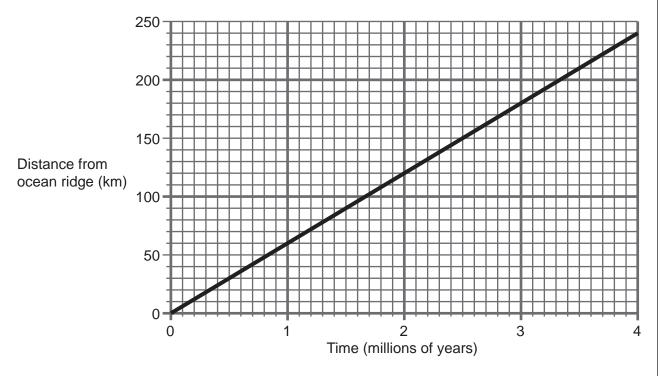


Figure 7

8. Using **Figure 7**, calculate the average rate of sea floor spreading of the ocean ridge (in cm per year) in **Figure 6** over the last 4 million years. Show your calculation below. [2]

Calculation

..... cm per year

Figure 8 shows the changes in radon gas content in groundwater before and after an earthquake on January 17th 1995 in Japan.

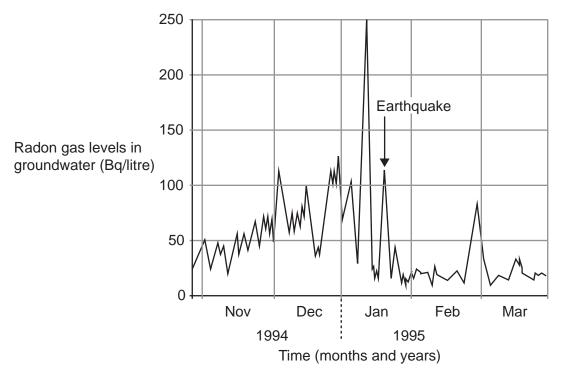


Figure 8

9.

Figure 8 are incorrect? Tick (/) only two boxes.	content of groundwater seen in [2]	
in December levels did not exceed 140 Bq/litre		
levels reached their peak one month before the earthquake		
a marked increase coincided with the earthquake		
one month before the earthquake variations in levels were greater than the previous month		
for two months before the earthquake levels went up and down frequently but the general trend was a decrease		
after the earthquake levels were fairly stable with an increase over one month after the earthquake		

13

Turn over.

Section 3 – answer questions 1 – 5

Figure 9 is a sedimentary log.

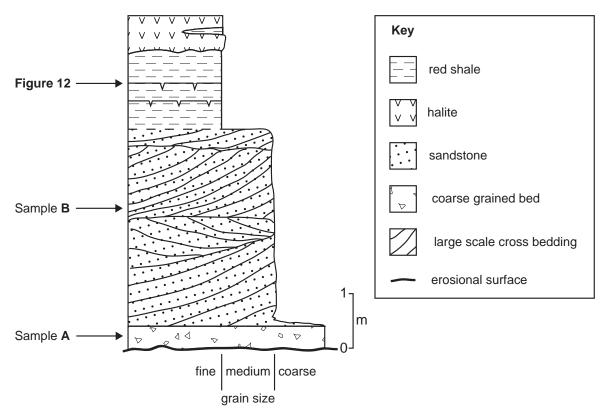


Figure 9

Figure 10 shows the texture of samples **A** and **B** taken at the locations shown in the sedimentary log in **Figure 9**.

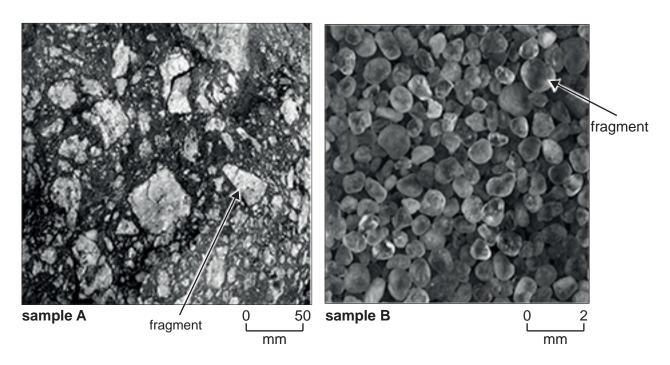


Figure 10

17

Table 3, which has been partly completed, compares the size and shape of the labelled fragments in **Figure 10** and the sorting of the two samples (**A** and **B**).

texture		samp	ole A				sample B	
grain size	fragment from	m A is c	oarse grained	d				
grain shape						ment nded	from B is subrounded	to
sorting								
			Tal	ble 3				
fragment fro	om A is rounde	ed	poorly so	orted			fragment from B is fine	e grained
well sorted fragment from A is angular		ngular		fragm	ent from B is medium	grained		
fragment from B is coarse grained fragment from A has high sphericity				ty				
	 Complete Table 3 by writing the appropriate descriptions of samples A and B in Figure 10 in their correct positions. Choose from the descriptions in the boxes below Table 3. [4] 							
2. Name the	rock type for	ming sa	mple A in Fig	gure 10.	Tick	(√) o	nly one box.	[1]
conglome	erate							
sandston	е							
breccia								
shale								
limestone								

Figure 11 is a rose diagram showing the orientation of the dip of the large scale cross bedding in **Figure 9**.

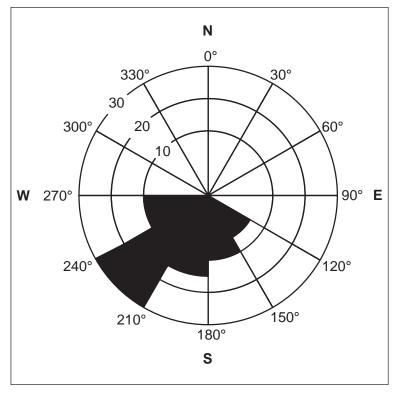
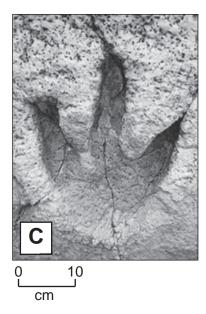



Figure 11

ა.	correct? Tick () only two boxes.	arge scale cross bedding are [2]
	formed by a river flowing from the south west	
	formed from migrating sand ripples in between low and high tide	
	formed by a river flowing towards the north east	
	formed by wind blowing from the north east	
	formed by wind blowing towards the south west	
	formed in low energy conditions from suspension	

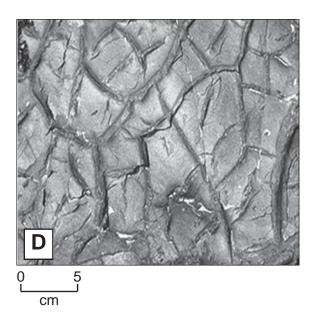


Figure 12

Name the **two** structures (**C** and **D**) in **Figure 12**. Select your answers from the list below.

[2]

4250 010019

trace fossil cross bedding desiccation cracks plant burrows ripple marks

	D
5.	Using Figures 9-12 , explain how the evidence suggests that the sedimentary environment changed during the deposition of the beds shown in the sedimentary log in Figure 9 . [4 QWC]

Turn over.

13

Section 4 – answer questions 1 – 9

Figure 13 is a geological map showing an area of Scotland with faults and igneous rocks formed during the Caledonian orogeny.

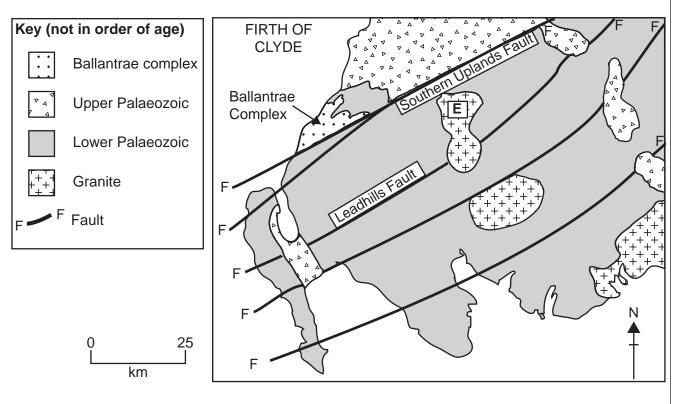


Figure 13

-	Which two of the following statements about the relative ages of and the Palaeozoic rocks in Figure 13 are incorrect ? Tick (🗸) on	
	granite E is younger than the Leadhills Fault	
	the Leadhills Fault is older than the Upper Palaeozoic rocks	
	granite E was intruded after the Lower Palaeozoic rocks	
	granite E is older than the Leadhills Fault	
	granite E could have been intruded before, during or after the Upper Palaeozoic	
	the Leadhills Fault is older than the Lower Palaeozoic rocks	

	21	
2.	Which one of the following statements best describes the probable origin of granite magmas during the Caledonian orogeny? Tick (/) only one box. [1]	Examiner only
	partial melting of the mantle beneath the ocean ridge	
	partial melting of the mantle at a transform fault	
	complete melting of the mantle beneath an island arc	
	partial melting of continental crust beneath a fold mountain	
	complete melting of subducting ocean crust beneath a coastal mountain chain	
3.	Which one of the following is not evidence for plate collision during the Caledonian orogeny? Tick (\mathcal{J}) only one box. [1]	
	thrust faults	
	turbidites	
	flood basalts	
	regional metamorphism	
	fold mountain chains	

Examiner only

Figure 14 is a geological cross section across an area of the map in Figure 13.

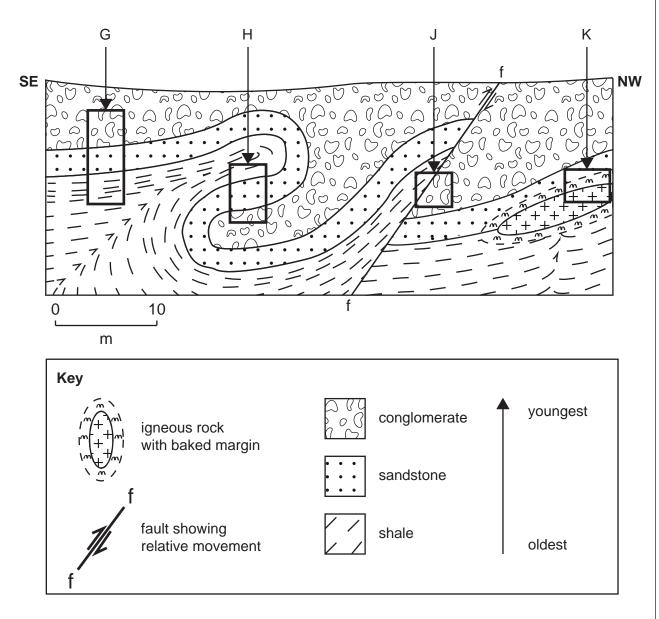


Figure 14

4. In which box in Figure 14 is a younger rock unit on top of an older rock unit? Tick (J) only one box.

[1]

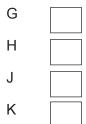


Figure 15 is a microscope view of an igneous rock forming part of the Ballantrae Complex in Figure 13.

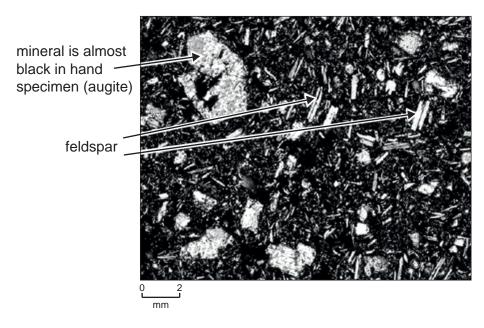


Figure 15

5.	Tick(\(\)) only two boxes.	gure 15 are correct?	[2]
	the rock is granite		
	the texture suggests two stages of cooling		
	crystals are interlocking and show alignment		
	the rock is gabbro		
	the minerals are formed by crystallisation from solution in evaporating water		
	the rock is basalt		

Figure 16 is a photograph of structures within the rocks of the Ballantrae Complex in Figure 13.

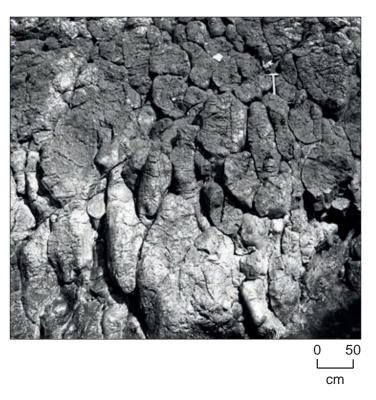


Figure 16

3.	Name the structures in Figure 16 . Tick (✓) only one box.	[1]
	included fragments	
	pillow lavas	
	dykes	
	folds	
	ripple marks	
7.	Explain how the structures in Figure 16 formed.	[3]

Figure 17 is a microscope view of metamorphosed limestone (marble) from the metamorphic aureole of a granite in **Figure 13**.

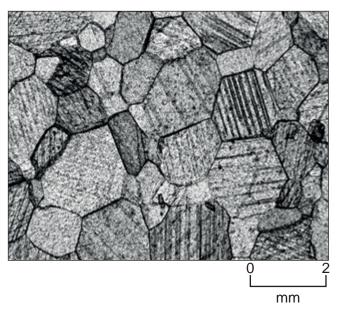


Figure 17

ο.	Tick (/) only two boxes.	[2]	
	foliated		
	shows a schistose texture		
	minerals in the rock are formed by recrystallisation		
	non-foliated [
	minerals in the rock are formed by crystallisation from magma		
	has a slaty cleavage		
9.	The texture of the rock in Figure 17 could also be present in a quarthen been metamorphosed. Using the Data Sheet , describe two carried out to determine whether a rock is a metamorphosed limestometamorphosed sandstone.	oractical tests that could be	
	Test 1		
	Result		
	Test 2		
	Result		1
	© WJEC CBAC Ltd. (4250-01)	Turn over.	•

(4250-01)

© WJEC CBAC Ltd.

Section 5 – answer questions 1 – 7

Figure 18 shows the rock types and graptolite fossils in three boreholes. Lines of correlation are shown.

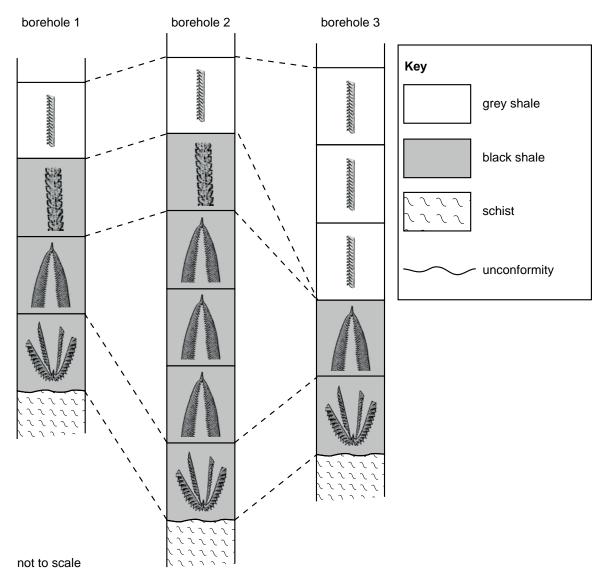
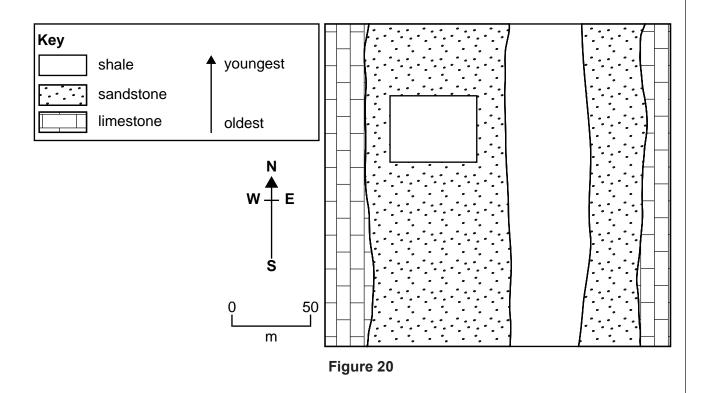


Figure 18

1.	Which one of the following statements about Figure 18 is correct? Tick (/) or	nly one box.	[1]
	four graptolite zones are present in all three boreholes		
	as graptolites evolved there was an increase in the number of stipes		
	the rocks are being correlated by using the principles of original horizontality and lateral continuity		
	evolution of the graptolites allows the absolute dating of the beds in each borehole		
	the beds in all three boreholes are the correct way up		

	- ·	
2.	Which one of the following is essential for fossils such as graptolites which are used in the dating and correlation of rocks? Tick (/) only one box. [1]	Examiner only
	not limited to a specific environment	
	similar in form so that it is difficult to distinguish between them	
	usually live on the sea floor and are not widespread	
	should be found on one continent to allow world-wide correlation	
	found in rocks from each geological period	
	The fossil in Figure 19 was found in rocks in Wales.	
	Figure 19	
_		
3.	Which one of the following statements best describes the formation of the rock containing the fossil in Figure 19 ? Tick (/) only one box. [1]	
	formed by the regional metamorphism of sedimentary rock deposited in a freshwater lagoon during the Cambrian Period	
	formed by exceptional preservation in the Burgess shale formation during the Jurassic Period	
	formed by deposition on the continental shelf during the Cambrian Period	
	formed from the solidification of magma under water during the Ordovician Period	
	formed by the deposition of sediment by glacial meltwater during the Pleistocene	


Explain how changes in one morphological feature of extinct cephalopods can be used in the dating and correlation of rocks. [3]
Minish are of the following was the socilest to appear in the food! record? Tick (/) only one
Which one of the following was the earliest to appear in the fossil record? Tick (/) only one box. [1]
soft bodied animals such as jellyfish
single cells such as bacteria
multicellular organisms such as corals
animals with hard parts such as trilobites
sharks
A very large, circular, meteorite crater near the coast of Mexico is believed to be approximately 65 million years old. Which two of the following events was the meteorite impact thought to be partly responsible for? Tick (/) only two boxes. [2]
evolution of the earliest birds
extinction of the amphibians
extinction of the dinosaurs
separation of Africa from America
appearance of the earliest mammals

7.	Life originated on Earth approximately 3,500 million years ago. Describe the probable environment in which life originated. [3]	Examiner only
		12

© WJEC CBAC Ltd. (4250-01) Turn over.

Section 6 - answer questions 1 - 10

Figure 20 is a geological map showing folded beds. The surface of the ground is flat and the beds are the correct way up.

1. Draw **one** of the arrows shown below in the empty box on **Figure 20** to show the dip direction of the bed at this location. [1]

2. Using evidence from Figure 20, explain why the angle of dip on each limb of the fold must be different. [2]

	31		
3.	Which one of the following statements about the fold in Fig Tick (/) only one box.	gure 20 is incorrect?	miner nly
	the fold is a syncline		
	the trend of the axial plane trace of the fold is N-S		
	shale forms the core of the fold		
	the axial plane of the fold dips towards the west		
	the directions of compression are from the east and west		

Figure 21 is a geological map showing two vertical dip-slip faults.

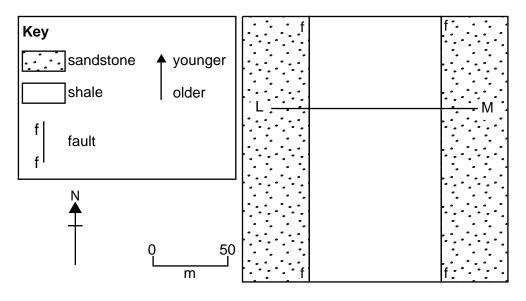


Figure 21

Which one of the four cross sections below best represents the geology along the line of section L – M in Figure 21? Tick (/) only one box and explain your answer. [3]

The half arrows show relative movement along each fault.

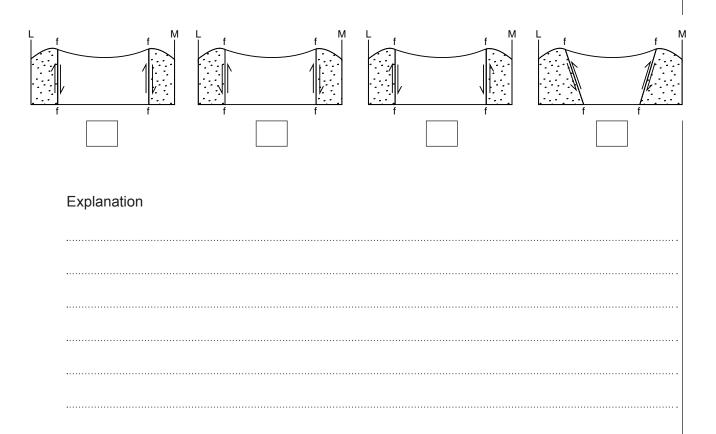


Figure 22 shows the results of a survey to locate hydrocarbon traps in the North Sea.

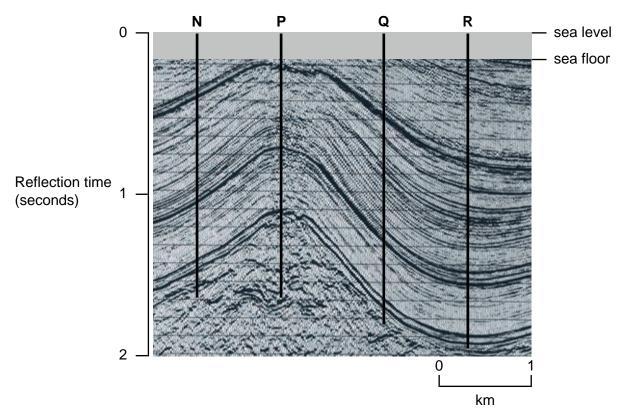


Figure 22

5.	Which one of the follow	ving types of survey is shown in Figure 22 ? Tick (✓) only one box.	[1]
	surface mapping		
	magnetic survey		
	sampling of sediment		
	seismic survey		
	geochemical survey		
6.	Which one of the follow Tick (/) only one box.	ving types of possible hydrocarbon trap is present in Figure 22?	[1]
	unconformity		
	anticline		
	fault		
	salt dome		
	syncline		

7.	At which one of the locations in Figure 22 (N , P , Q or R) would it be best to drill a test well to establish whether hydrocarbons are present at depth? Tick (/) only one box. [1] N Q R	Examiner only
8.	Some oil wells in the North Sea can extract up to 60% of the oil whilst other wells can only extract 30%. Which one of the following could explain the higher extraction rate? Tick (/) only one box. [1] reservoir rock has lower porosity reservoir rock is more poorly sorted reservoir rock is less well cemented reservoir rock is less permeable grain shapes in the reservoir rock are more angular	
9.	Which one of the following environments will result in the formation of a suitable oil source rock? Tick (/) only one box. [1] deep sea conditions near the continental slope affected by turbidity currents a warm sea inhabited by corals in which limestone is forming high energy shore line conditions which preserve organic matter in a conglomerate organic-rich sea in a tropical climate which later evaporates low energy organic-rich conditions, often anaerobic	

© WJEC CBAC Ltd.

Figure 23 is a cross section through a hydrocarbon trap showing the fluids present in the pore spaces of the sandstone.

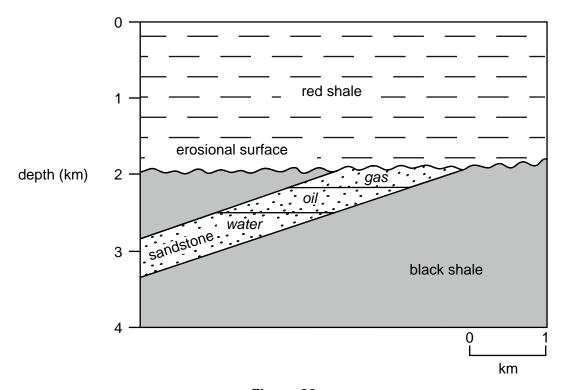


Figure 23

10.	Explain how hydrocarbons have migrated from a source rock at depth and accumula trap in Figure 23 .	ted in the [4 QWC]

16

Section 7 – answer questions 1 – 5

Figure 24 shows where soil samples were collected, analysed for their copper content and the results plotted on the map. The figures show the levels of copper in parts per million (ppm). Lines have been drawn joining equal values for 300, 500 and 1000 ppm.

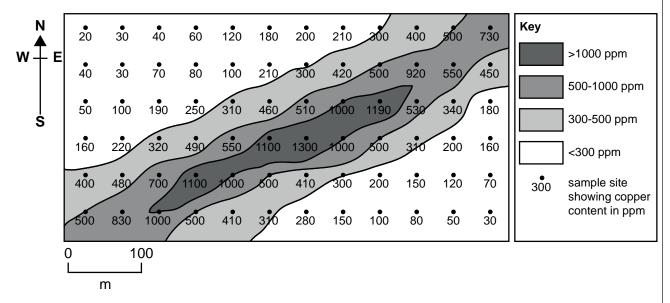


Figure 24

1.	ppm in Figure 24 ? Tick (J) only one box.	of the copper over 300 [1]
	evenly distributed over the area covered by the map	
	a linear pattern orientated NE-SW approximately 175m wide	
	a circle of concentration with the highest concentration in the centre	
	a linear pattern orientated NW-SE over 300m wide	
	random sampling has caused an apparent concentration of copper	
2.	Which one of the following underlying geological structures could have concentration pattern in Figure 24 ? Tick (/) only one box.	ve caused the copper [1]
	a lava flow dipping southward at a low angle underlying the whole area	
	a NE-SW trending fold with sandstone in the core	
	a vertical dyke with a NW-SE strike cutting across the area	
	a straight vertical mineral vein under part of the area	
	a vertical fault with a NW-SE strike cutting across the area	

Copper is a trace element in the crust making up 0.005% of the Earth's crust. A copper ore contains an average of 1% copper. Calculate by how much the copper in the ore has been concentrated above the value for the Earth's crust. Show your calculation below.

Calculation

concentration

concentration

After mining, soils are often contaminated by metallic elements. Describe **one** way in which the metals in the soil can be returned to safe levels.

[2]

© WJEC CBAC Ltd. (4250-01) Turn over.

After quarrying and mining, quarries can be put to other uses. **Figure 25** is a geological cross section showing two disused limestone quarries (\mathbf{S} and \mathbf{T}), which are being considered for the disposal of domestic waste.

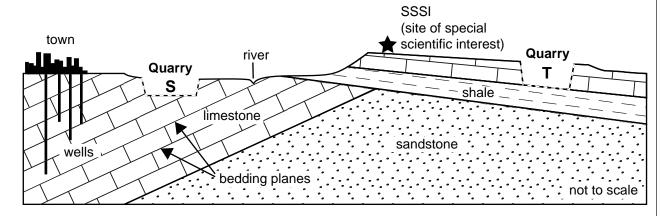


Figure 25

5.	State which quarry (S or T) in Figure 25 you consider to be the most suitable site for the disposal of domestic waste and explain the geological reasons involved in your choice. [4]
	Quarry S or T
	Geological reasons

10

END OF PAPER

BLANK PAGE