Surname	Centre Number	Candidate Number
Other Names		0

GCSE – NEW

3420U20-1

PHYSICS – Unit 2: Forces, Space and Radioactivity

FOUNDATION TIER

WEDNESDAY, 23 MAY 2018 - AFTERNOON

1 hour 45 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	4				
2.	9				
3.	7				
4.	9				
5.	8				
6.	7				
7.	16				
8.	7				
9.	13				
Total	80				

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

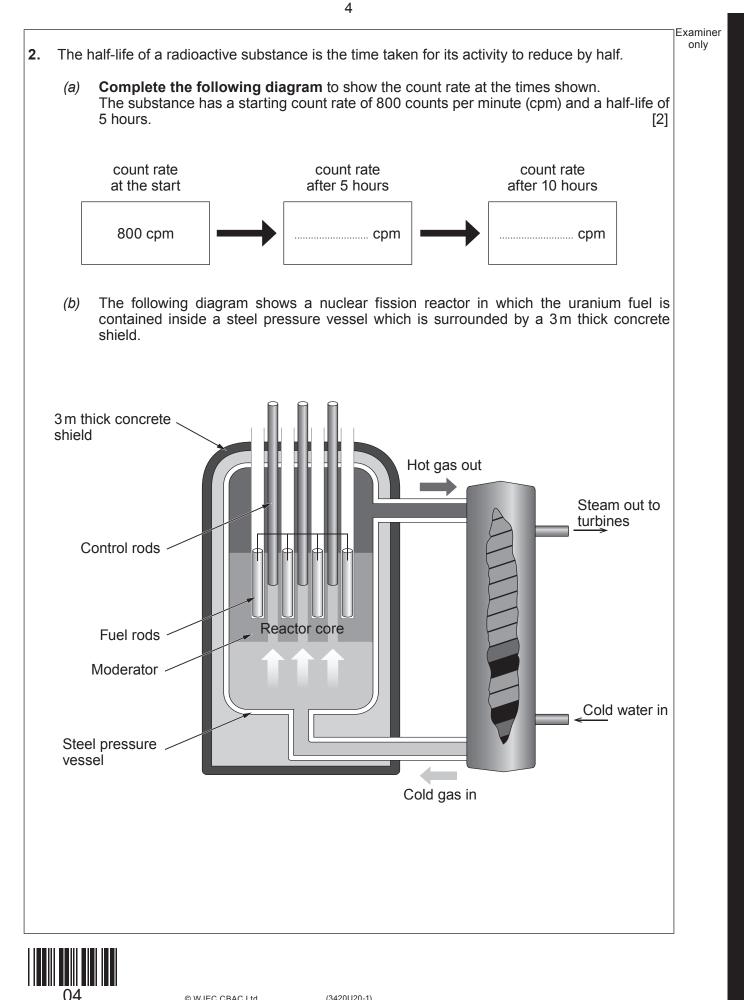
Write your answers in the spaces provided in this booklet. If you run out of space use the additional page at the back of the booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. The assessment of the quality of extended response (QER) will take place in question **7(a)**.

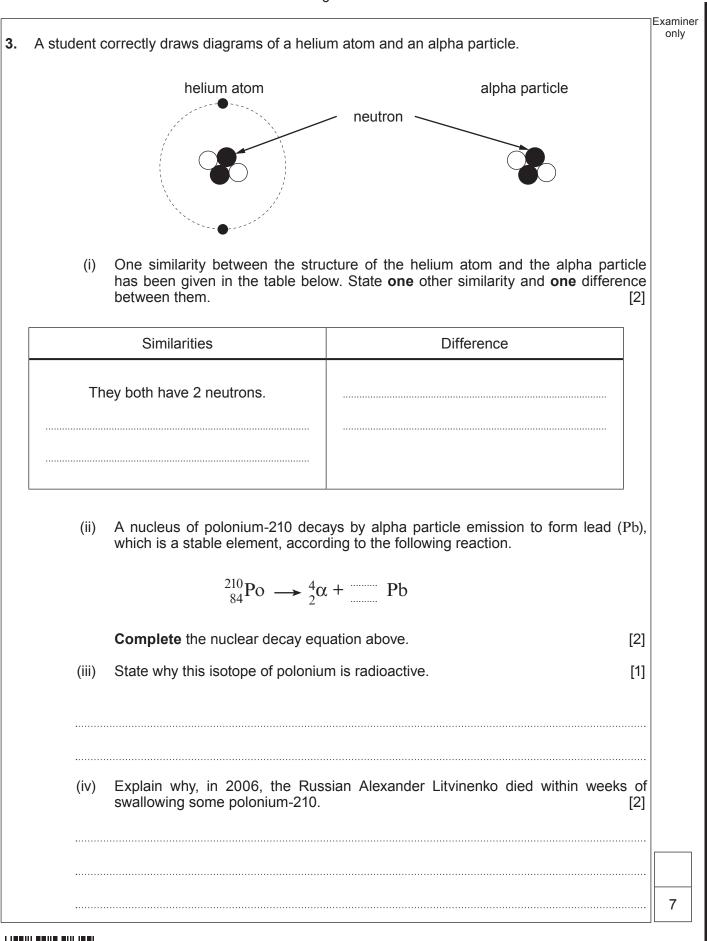
2

Equations	
speed = $\frac{\text{distance}}{\text{time}}$	
acceleration [or deceleration] = $\frac{\text{change in velocity}}{\text{time}}$	$a = \frac{\Delta v}{t}$
acceleration = gradient of a velocity-time graph	
resultant force = mass × acceleration	F = ma
weight = mass × gravitational field strength	W = mg
work = force × distance	W = Fd
force = spring constant × extension	F = kx
momentum = mass × velocity	p = mv
force = $\frac{\text{change in momentum}}{\text{time}}$	$F = \frac{\Delta p}{t}$
$u = initial \ velocity$ $v = final \ velocity$ $t = time$ $a = acceleration$ $x = displacement$	$v = u + at$ $x = \frac{u + v}{2}t$
moment = force × distance	M = Fd


SI multipliers

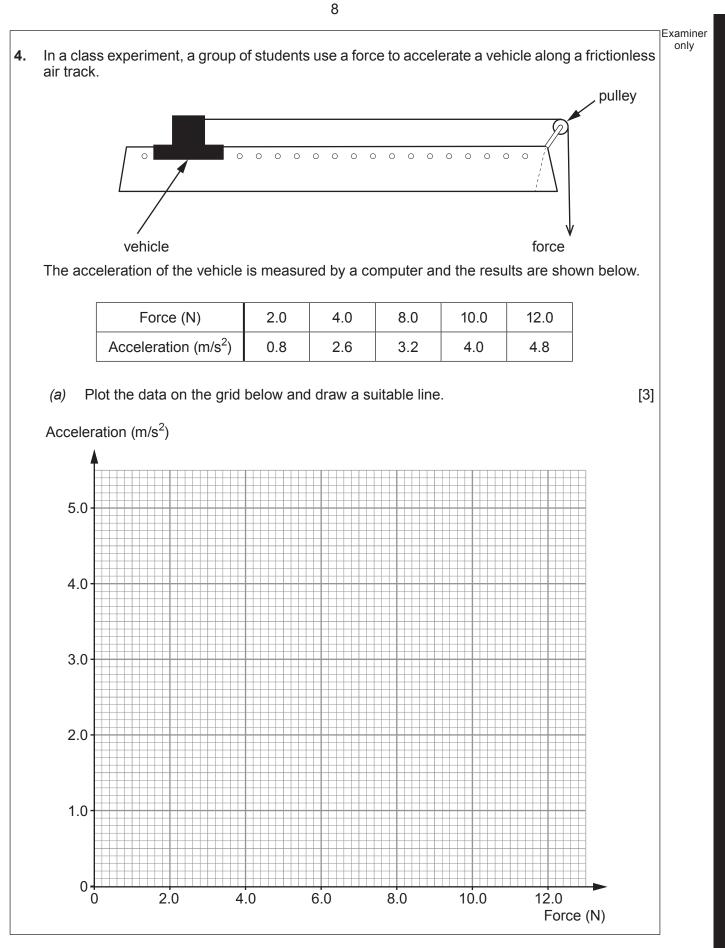
Prefix	Multiplier
m	1 × 10 ⁻³
k	1 × 10 ³
М	1 × 10 ⁶

		3		Examine	ar
		Answer all questions.		only	1
1.	(a)	Light from distant galaxies is changed as it travels through the Universe.			
		Tick (/) the three correct statements below.	[3]		
		The wavelengths of light from distant galaxies have decreased.			
		Distant galaxies look red.			
		Absorption spectra from distant galaxies show red shift.			
		The Universe has expanded since the light was given out from distant galaxies.			
		Light received from our Sun is shifted to the blue end of the spectrum.			
		The Sun's absorption spectrum shows no red shift.			3420U201 03
	(b)	Name the model of the origin of the Universe that is supported by cosmological red	shift. [1]		
	•••••				
				4	



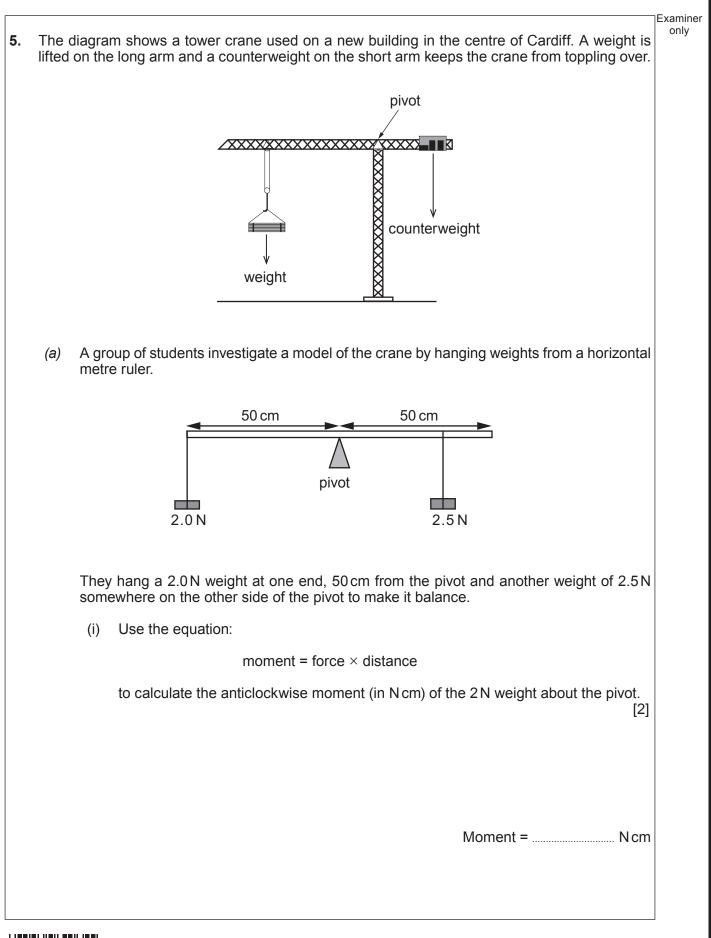
3420U201 05

$\begin{array}{c} 235\\ 92\\ U + \frac{1}{0}n \longrightarrow \frac{137}{52}\text{Te} + \frac{97}{40}Zr + 2\frac{1}{0}n \end{array}$ (i) State the number of neutrons released in this reaction. [1] (ii) Complete the following sentences about the nuclear reactor by <u>underlining</u> the correct word or phrase in each bracket. [4] A nucleus of uranium is made to split into two smaller nuclei when it captures (one / two / three) neutron(s). For fission to occur, the neutron(s) to be captured must be (fast moving / stationary / slow moving) and this takes place in the (moderator / control rods / fuel rods). An uncontrolled chain reaction is prevented by using (control rods / a moderator / concrete shielding). (c) State two reasons why it is difficult to store waste material from nuclear power stations. [2]	One	anium nucleus can split apart, forming two smaller nuclei in a nuclear reactor. possible nuclear reaction is shown below in which a nucleus of uranium forms nuclei llurium (Te) and zirconium (Zr).	Examin only
 (ii) Complete the following sentences about the nuclear reactor by <u>underlining</u> the correct word or phrase in each bracket. [4] A nucleus of uranium is made to split into two smaller nuclei when it captures (one / two / three) neutron(s). For fission to occur, the neutron(s) to be captured must be (fast moving / stationary / slow moving) and this takes place in the (moderator / control rods / fuel rods). An uncontrolled chain reaction is prevented by using (control rods / a moderator / concrete shielding). (c) State two reasons why it is difficult to store waste material from nuclear power stations. [2] 		${}^{235}_{92}\text{U} + {}^{1}_{0}\text{n} \longrightarrow {}^{137}_{52}\text{Te} + {}^{97}_{40}\text{Zr} + {}^{1}_{0}\text{n}$	
(a) [4] A nucleus of uranium is made to split into two smaller nuclei when it captures (one / two / three) neutron(s). For fission to occur, the neutron(s) to be captured must be (fast moving / stationary / slow moving) and this takes place in the (moderator / control rods / fuel rods). An uncontrolled chain reaction is prevented by using (control rods / a moderator / concrete shielding). (c) State two reasons why it is difficult to store waste material from nuclear power stations. [2]	(i)	State the number of neutrons released in this reaction[1]	
 (one / two / three) neutron(s). For fission to occur, the neutron(s) to be captured must be (fast moving / stationary / slow moving) and this takes place in the (moderator / control rods / fuel rods). An uncontrolled chain reaction is prevented by using (control rods / a moderator / concrete shielding). (c) State two reasons why it is difficult to store waste material from nuclear power stations. [2] 	(ii)		
 / slow moving) and this takes place in the (moderator / control rods / fuel rods). An uncontrolled chain reaction is prevented by using (control rods / a moderator / concrete shielding). (c) State two reasons why it is difficult to store waste material from nuclear power stations. [2] 			
<pre>/ concrete shielding). (c) State two reasons why it is difficult to store waste material from nuclear power stations. [2]</pre>			
9	(c) Stat	•	
			9



BLANK PAGE

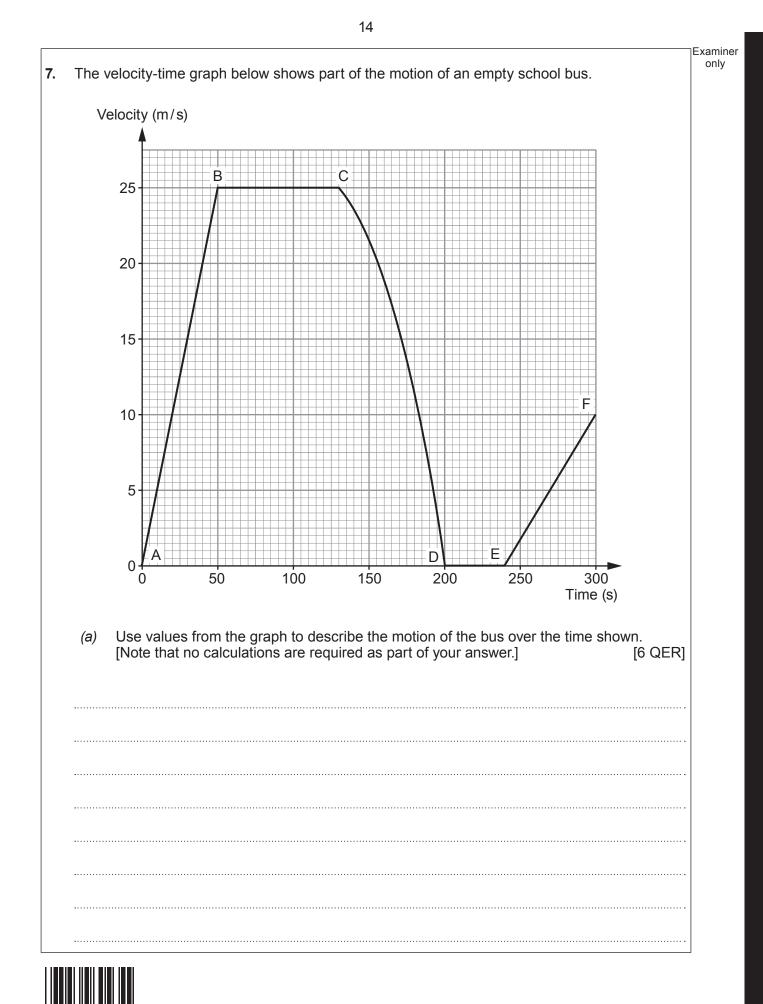
PLEASE DO NOT WRITE ON THIS PAGE



3420U201 07

∃Exami		9			
onl	eration of 2.0 m/s ² . [1]	nd the force that produces an acc	Use the graph to find	(i)	(b)
	Force =N				
			Use the equation:	(ii)	
		mass = $\frac{\text{resultant force}}{\text{acceleration}}$			
	[2]	iss of the vehicle.	to calculate the mass		
	Mass = kg				
		tudents in the class carry out the s r mass. Draw a line on the graph he same values of force.	a vehicle of greater m	(iii)	
	vehicle the acceleration will n is correct. [2]	rce of 16N is applied to the originate of the originate o	suggests that if a force .6 m/s ² . Use the data to	Eric be 5	(c)
					•••••
9					

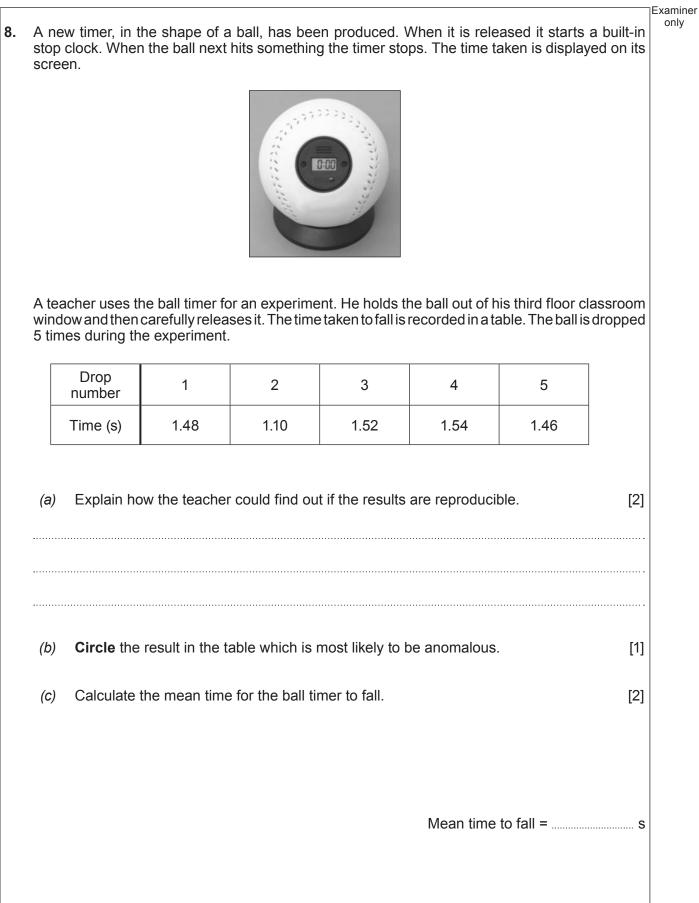
3420U201 11


	(ii)	Use your answer to part (i) and the equation:	Examiner only
		distance = $\frac{\text{moment}}{\text{force}}$	
		to calculate the distance that the 2.5N weight should be placed from the pivot for the ruler to balance. [2]	
		Distance = cm	
	(iii)	Explain why it would be impossible to balance the 2N weight on the end of the ruler if the 2.5N weight is replaced with a 1.5N weight. [2]	
	·····		
			3420U201
(b)		rticular tower crane is capable of lifting a maximum mass of 15000 kg. the equation:	
		weight = mass (kg) \times gravitational field strength	
	to ca [gra\	alculate the weight of this mass. [2] vitational field strength, $g = 10 \text{ N/kg}$	
		Weight = N	
			8

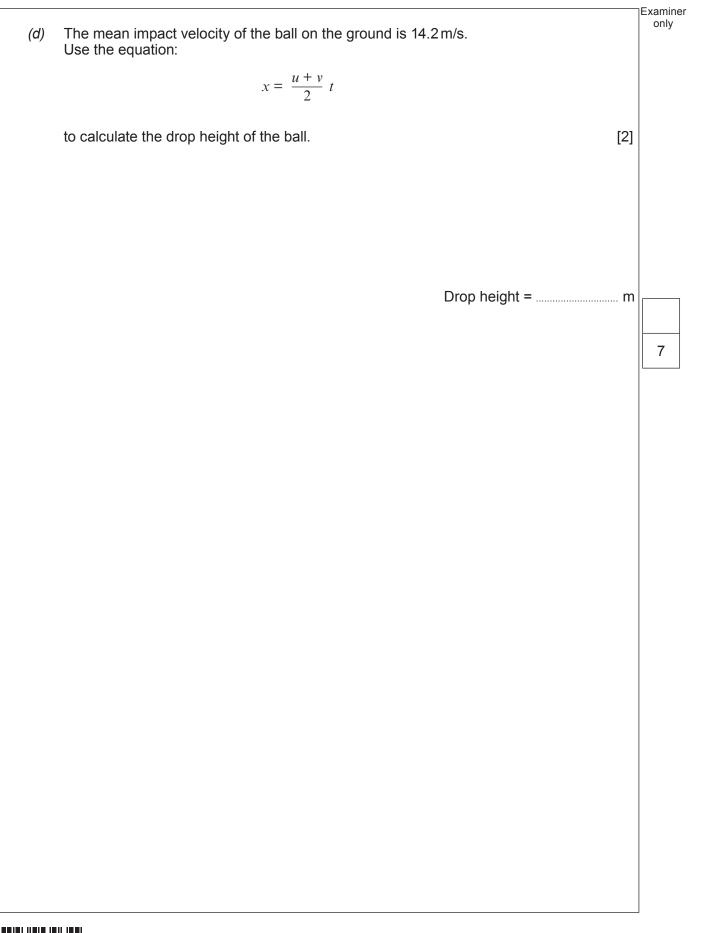
ars ollisi	are te ion.	ested so that the manufacturers know what happens to the passengers during a
n on arrie	e sucl r and	h test, a car of mass 1500kg travelling with an energy of 127500J strikes a solid stops. The force applied to the car by the barrier is 500000N.
(a)	(i)	Name the energy that the car possesses due to its motion. [1]
	(ii)	State the work done by the barrier to stop the car. [1]
(b)	(i)	Work done = J Use the equation:
		distance = $\frac{\text{work}}{\text{force}}$
		to calculate the distance over which the force acts. [2]
		Distance = m

ſ		Examiner
(ii)	 State one feature of cars that is designed to keep the one head-on collision. 	a mb c
	II. Explain how this safety feature keeps the driver safer.	[2]
		7
13	© WJEC CBAC Ltd. (3420U20-1)	Turn over.

15 Examiner only Refer to the graph to answer the following questions. The mass of the bus is 10000 kg. (b) (i) Use an equation from page 2 to calculate its change in momentum between A and B. [2] Change in momentum = kg m/s (ii) Use an equation from page 2 to calculate the resultant force that acts on the bus between A and B. [2] Resultant force = N Use the equation: (iii) distance = speed \times time to calculate the distance travelled between B and C. [2] Distance = m



	(iv)	Another identical bus travels the same distance as in part (iii). However, it travels at a slower, constant speed. State two ways that its line on the graph would be different from the one shown. [2]	Examiner only
 (C)	Expl woul	lain, using the idea of inertia, how the acceleration of a bus filled with school children Id compare with the acceleration of the empty bus. [2]	
			16
16		© WJEC CBAC Ltd. (3420U20-1)	


BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

[2]

Examiner only

20

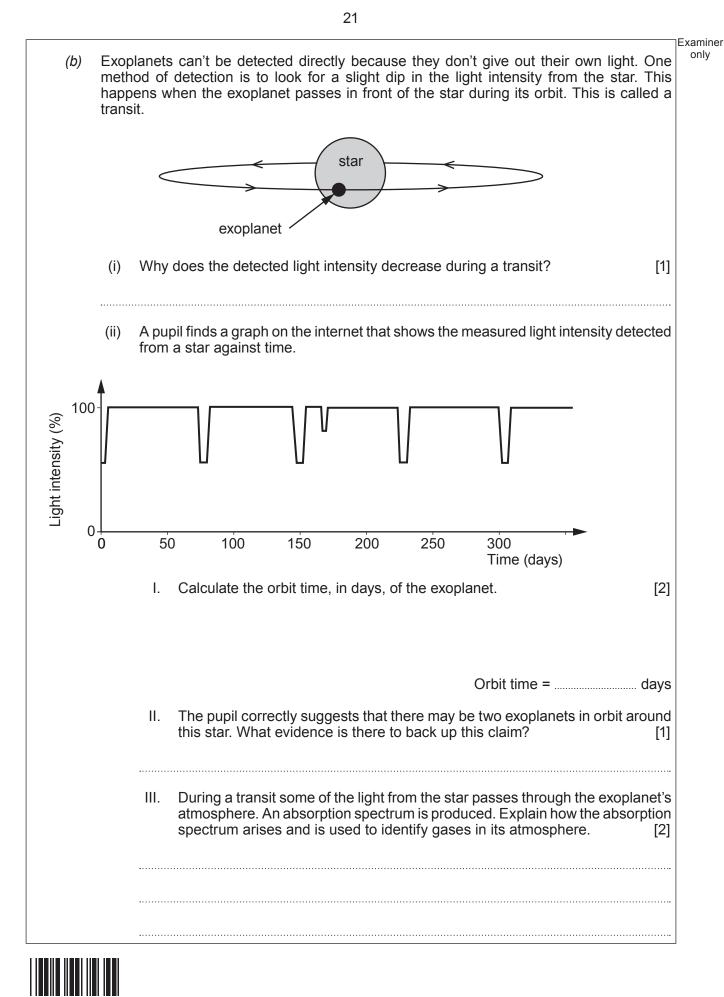
9. In 1992 scientists first detected a planet orbiting a star outside our Solar System. Hundreds of these exoplanets have been found since. **Table 1** shows the stars that have been discovered with 6 or more exoplanets in orbit, along with information about our Sun.

	Table 1							
Name of star	Distance of star from Earth (I-y)	Mass of star (compared to the Sun)	Temperature of star (K)	Number of planets in orbit				
Sun	0.00002	1.0	5770	8				
HR 8832	21	0.8	4700	7				
HD 10180	127	1.1	5910	7				
Kepler 90	2500	1.1	5930	7				
HD 40307	42	752.0	4980	6				
HD 127	206	0.7	870	6				
Kepler 20	950	0.9	5470	6				
Kepler 11	2000	1.0	5680	6				

(a) (i) Tick (\checkmark) the **two** correct statements below.

Four stars have the same mass.

Light travelling from Kepler 90 takes the longest time to reach Earth.


The range of star temperatures is 5060 K.

Hotter stars have more planets in orbit around them.

Star HR 8832 is double the distance of star HD 40307 away from Earth.

(ii) State **two** reasons, using evidence from **Table 1**, why scientists predict that the star Kepler 11 is most likely to have a Solar System similar to ours. [2]

Examiner only

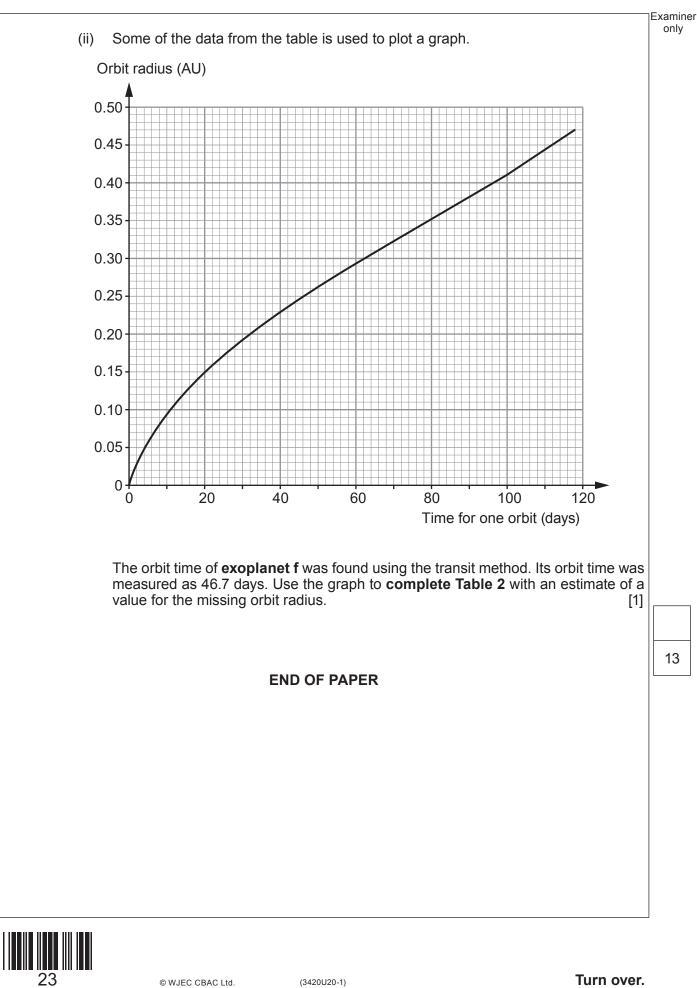

(c) **Table 2** shows data collected for all the exoplanets in orbit around the star called Kepler 11. They are listed in order of increasing distance.

		Table 2		
Exoplanet	Mass (compared to Earth)	Time for one orbit (days)	Temperature (K)	Orbit radius (AU)
b	1.9	10.3	871	0.09
с	2.9	13.0	807	0.11
d	7.3	22.7	659	0.16
e	8.0	32.0	596	0.20
f	2.0	46.7	525	
g	25.0	118.4	386	0.47

(i) Compare the **trend** in temperature with orbit radius of the planets around Kepler 11 to the planets in our Solar System where Venus is the hottest. [2]

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Exa

